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BULK PROPAGATION CHARACTERISTICS OF DISCRETE RANDOM MEDIA

V. N. Bringi, T. A. Seliga, V. K. Varadan and V. V. Varadan
Wave Propagation Group, Boyd Laboratory
\L The Ohio State University, Columbus, Chio 43210

The propagation of electromagnetic waves in an infinite med-
ium composed of a random distribution of :dentical, finite
scatterers is studied. The T-matrix of a single :isolated
scatterer, obtained by using the nul! field equation, is
used to make the equations for the field incident on a par-
ticular scatterer and the field scattered by it, self
consistent. The method we propose is well suited for com=-
putations at wavelengths comparable to obstacle size and for
non-spherical obstacles. The attenuation associated with
the coherent field as predicted by our computaticns is
compared with the only two sets of experimental results

that can be found in the literature. Agreements and dis-
crepancies are examined and the range of validity of the
assumed quasi-crystalline approximation (Q@M? is discussed.
Further improvements using the coherent potential approxi-
mation (€@P®) and the 'self consistent approximation' ¢4CxX;
as well as improved models of the pair correlation function
are suggested.

1. INTRODUCTION

A treatment of the propagation of electromagnetic waves in an '
infinite medium composed of a random distribution of identical finite ‘
scatterars is presented. The coherent or average wave in such a med-
ium will be assumed to be a plane wave propagating in a homogeneous
continuum characterized by a "bulk”™ complex wave number. This wave
number will depend on both the frequency and the concentration of
the discrete scatterers causing the effective medium to be dispersive.

The aim of this work is to present a multiple scattering theory and
a computational method of obtaining such dispersion rejations for
random media models including comparisons with scme past laboratory
experiments.

The effects of multiple scattering on the coherent wave are of
great practical importance, in particular the dependence on concen-
tration at wavelengths comparable to scatterer size. At very low
concentrations (< 1% by volume) multiple scattering can be neglected
and each scatterer can be treated as independent. However, -n many
practical situations the concentration can range between l% to 20%
where multiple scattering effects may be important. This is parti-
cularly reflected in the study of higher order statistics of the ran-
dom medium including radiative transfer theory which assume that the
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44 VN Bringret al

coherent w~wave »ropagates with a wave number that :s only degendent
on the Zorward scatter:ing amplitude of a single scatzerer. This
result 1s ootained as a solution of the Foldy~-Twersky integral egua-
tion for an infinite slab medium filled waith large tenuous scatter-
ars {l}. However, zhis well Xnown analysis neglects correlation
setween the scatterers, and recent advances in multiple scattezing
theory by Twersky (2,3,4] have accounted for the effects of pair-
correlation at nigher concentrations.

The theoretical/computaticnal method presented here .s basec on
a self-consistent exciting field approach and relies on the T-matrix
[2] which characterizes the response of an i1solated single scatterer
=0 an arbitrary exciting field. The random medium :s described sta-
tistically with respect to the random positions that each scatterer
can occupy through the first and second order probability distribu-
tion functions. Ensemble or configuraticonal averagiing together with
Lax's quasi-crystalline approximation (QCA) yields a set of "hole”
correction integrals. By assuming a plane wave dbehavior for the
coherent wave and using the extinction theorem gives rise tc a scmo-
geneous system of eguations whose sinqular solutions yield the com-
plex wave number. The method is necessarily computational; hcwever,
analytical forms of the dispersion relations are obtained in the lcw
frequency or Rayleigh limit for spherical and spheroidal scatterer
geometries. This paper closely follows the develcpments given by
the authors [6,7,8] for acoustic, electromagnetic and elastic waves.
Previous work which forms the basis for the present analysis 1is
given in Refs. [9-1l2]. The numerical results obtained for a randem
distribution of spheres are compared with the experimental results
of Hawley, Beard and Twersky [l13] and Olsen and Kharadly (i4].

One of the aims of this paper is to suggest improvements to the
QCA by incorporating the coherent potential approximation (CPA).
Cartain multiple scattering processes that are neglected by the
QCA-CPA scheme can be restored by making the 'self-consistent approx-
imation’ (SCA). If these improvements are used with more realistic
forms of the pair correlation function, then it may be possible to
extend the present formalism to a wider range of freguencies and

concentrations.

2. MULTIPLE SCATTERING FORMALISM

Consider N identical scatterers located in £ree space as shown

ST S e natoT . )
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Propagation characteristics of discrete random media 45

in Fig. 1 wiiere 0i and Oj refer to the centers of the i-th and 3~-th
gcacterers, The scatterers are assumed to be podies of revolution
with parallel symmetry axes, and the coherent wave is assume to
sropagate along this direction so that the bulk medium is isotropic
and does not cause any depolarizacion. Let fe be the relative die-
lectric constant of the jomogenecus scatterers.

We represent an incident plane electromagnetic wave propagating
along the positive z axis with wave number kx and of unit amplitude

with an ™% (ime dependence by

E°3) = & explika) (1
where € is the unit polarization vector. With no lcss of generality
we choose & to be either X or y.

The total electric field at any point in free space outside the
scatterers is the sum of the incident field and the fields scattered
by all the scatterers. This is written as

-
b4
.

1

ST - T,

- - -0 -
E(r) = E7(r) + i i

[*)

e 122

i

where E?(E - ;i) is the field, scattered by the i-th scatterer, at
the point of observation r. The field that excites the i-th scat-~
terer, however, is the incident field plus the fields scattered from
all the other scatterers. The exciting field term E® is used o
distinguish between the field actually incident on a scatterer and
the external incident field, E°, produced by a source at infinity.
Thus, at a point r in the vicinity of the i-th scatterer, we write

B = E%T) +

; iE§(E - ?j) . a< t-1l<2a (3)

b U i

where 'a' is the radius of the imaginary sphere circumscribing a
scatterer (see Fig. 1). 1In this analysis, we have assumed that
there is no interpenetration of the imaginary spherical shells of
radius 'a' which circumscribe each scatterer.

The T-matrix formulation of scattering we adopt here is based on
the extended integral equation approach due to Waterman ([15]. The
scattered and exciting fields with respect to a particular scatterer
are expanded in terms of a complete set of basis functions

M mn) wihich are the vector spherical harmonics. These form

N
cmn 't
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Figure 1. Random distiibution of aligned scatterers and plane

wave incidence in the 2-direction

X ®; - '

Figure 2. Geometry for the translation of the coordinate
system from oj to Oi
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solutions to the vector Helmholtz eguation and are given by

. -
. M m ., COS mo:
. M T o« {rhn(kr) Pn(cos "szn me; (4a)

.\’x:m & (1/k)7 « ﬁ’m {4b)

where o = g stands for even or odd and refers to the choice of the

trigonometric functions in Eq. (4). Wave functions regular at the
origin are obtained by replacing Hankel functions in Eq. (4) by the

Bessel functions jn and are denoted by (Reﬁ~mn’3553mn"

The scattered field from, say, the j-th scatterer, E?(E), can be
expanded in terms of "outgoing” vector wave functions with unknown

coefficients <a!ln,c311) as
-5 > a ; - - j - -
El(r) = ) ) ¢B< M, (r=r )+Cl. N_, (r=r.)/:
j n=0 =0 a8 in “oin 3 zin” rin 3%
o
T ~F.! >a. (5)

The exciting field incident on, say, the i~th scatterer, EE(E), can
be expanded into regular wave functions with unknown coefficients

(bt

i
cln'ccln) as

o n : : \
e -~ - ! - =i ~ < b
fi(r) = n;O 0 g;e 1b:inReM32n(r ri) c:LnReN:ZH(r L
o
a<lr-r.] <2a. (6)

The choice of the basis set in Eq. (5) satisfies the radiation con-
dition at infinity for the scattered field E?, while the choice in
Eg. (6) is a result of the regular behavior of the exciting field
Ei in the region a < [T - Eii < 2a.

N It has been shown that, if the total field ocutside a scatterer
is the sum of incident and scattered fields, the unknown scattered
field expansion coefficients can be related to the incident field
expansion coefficients through the transition or T-matrix ([5,15].

We extend this definition to the present case. Since (ff * E;) is
4




48 V.N Bringtetal

the total field at any point in free space, the expansion cceffi~
cients of the field scattered by the j-th scatterer may be formally
related to the coefficients of the field exciting the j-th scatterer
through the T-matrix:

Tei T fpreatt ot oor g

© Tain |\ tmp) i Tmp) LoyoTmp

1 o= i H ‘ (7)
; oI ' EFT:Ln121 (TJinzz 1 f 3

Lol Lmmpp e L Stmp

w“here summation is denoted by the repeated index convention. The
elements of the T-matrix involve surface integrals, which can be
evaluated in closed rform for spherical geometry, while for scatterers
of arbitrary shape they can only be evaluated numerically. The
T-matrix for a single scatterer is of the form

T = (@} reQ (8)

where ReQ and Q are matrices which are functions of the surface S of
the scatterer and of the nature of the boundary conditions.

Substitution of Egs. (5) and (§) in Eq. (3) yields

£l . .
TR p el mell (FeE) el el @ -F) - B
p*0 m=0 __e - ‘P 3 “mp 14
(9)
. E s lalog (F-fo+cd, 8. (F-f)
- L o 185 . -I. N _ r-r .
5i n=0 120 e ° n"sin Jin"cin i’}
o

Note that the series on the right-hand side of Egq. (9) is expressed
with respect to the center of the j-th scatterer while the series to
the left is expressed with respect to the center of the i-th scat-
terer. The addition theorem for the vector basis functions will be
used to express the right hand side of Eg. (9) in terms of the center
of the i-th scatterer. Formulas for the translation of {ﬁ(?-;j),
ﬁ(?-;j)} to an origin centered around the i-th scatterer can be
found in (16,17]:
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x n - - n
A, (z=-ry = ° B AILY , ReM__, ,(p-T.}
sin : iz 0z Jam'n m'n i
130 m'30 e
° ;10a)
7in . - - T
+ s-;'n' Re\_m,A,(r-:l) ,
x n - in
- - - - - b TR -
N, (r-r.}) = Y ? B Ay . ReN__, ,{r-r;}
Ten ] n'=0 a'=0 e - m'n m'n i
° {20b)
- 3:;?ﬂ, ReM_n.q.(E-Ei)i:
' - £,

where the geometry is shown in Fig. 2. Note that the minimum value

of r.. is 2a and ';-;i! < 2a for Eq. (6) to be valid so that the
4

condition for use of Eg. (l0) is always satisfied.

9

0

It then remains to expand the incident field E (Z) in terms of

an origin centered at the i~-th scatterer:
E%E) = % exp(iksy) expliki«(F-F )]

- ] ~
ikgy A (3% R (E-E 5 1
= e E {fols Reff g (£=2;) + g g ReN ) (s-r)): (11

s=1

- = - .“ ,‘ . ff .
where 53 r;*z; fols’ Ja1s 3TE the xnown expansion coefficients
and e = x. Substituzing Eqs. (10a), (10b) and (1l) into Eq. (9)
gives

EE S At = i =)
) 1 (bl __ReM_ __ + c___ ReN__ }
=0 m=0 e \ TIp Tmp “mp Tmp
o
o
Lk;i by - > 1
= bt fols Ret 1s * Sels ReNelsf
s=1
N » n » n' (o ; .y .
+7 7T 7 3 7 VT (@l Al .l BTEM el
jpri n=Q i=0 ﬂ;e n';o m'=0 at i Iinum'n’ sin <m'n am'n
"o <)
3 Jin 3j Iin N \
M (a:lnaum'n' * calnAum'n')ReN:m'n') : (12)
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ZJuation . 12) 1s byt an expansion of Eg. .3) in terms of vector

spherical harmonics with respect tc an 2rigin J, centered at the

1-%th scatrerer. A relation between the inknown axpansion coeff:-

cients {b:mp,:fpp) of the excirting £ieid and the unknown expans:ion
C L i = ,
coefficients \B,'.n,c7 1) of the scattered field can be obta:ined

Zrom EQ. .12} by using the known crthogonality properties cf the

vector spherical harmonics. It may be shown that

. N » n . .
1 ik3; . s Tt - - b) AR W) giin s
£ : . ) a)
So1n € oln' j21 =0 130 -e(s'unAoln’ “3in“oln’ (i3
T N -
o9
. ; K} © n . : .
b me®ug o T T T ed s2h e cd Al lab
eln “eln iz Za 13 - sin~eln s«neln
j=l n=0 (=0 .2
o
ot ;
where ' denotes the sum over all scatterers except the i-th
scatterer.

Substituting Eg. (7) into the above expressions, we cbtain a
salf-consistent set of eguations for the uniknown exciting field
coefficients as given in Egs. (lda,b).

Ty

i iks: X t - 2 -
boigr =& M E R
ola oln' " il n20 120 e R0 mE0 e
“To “"o
"(mcln\ll 3 fren) 12 i\ 4cin
{\Timp; Bimp * Tump;  imp: Soln'
EFTYCEINE o samd?? 5 a%4n (11a)
LLowmpy ump L wmp) “mp; oln'J
i ik:g § ¢ 2 ? - b 2 I3
< v 2eTT g A M L ! H J
eln eln j=1l n=0 =0 __e p=0 m=0  _e
-] "o
F{frsln\ll I . [T’L“\l‘ ¢J_\ aTin,
L loump) smp =mp | umpj ean
(f7in)2t 3 a}22 3\ zin ] ,
* {1 Tump) wmp * (Tump) impj Reln'! (14b}
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Thus, =he unknown scattered field expans:on coefficients are elimin-
ated through use of the T-matrix resulting :in a set of eguat:ons
wnvolving the expansion coeff.cients lb_mo,c_m ) of the exciting
f:eld only., These coeffil:ents are functions o

0

the pos:ticns cf

all the scatterers.

3. CONFIGURATIONAL AVERAGING

In order to average the wave fields over the positions of all
the scatterers we define the probability density function of f:nding
the f:rst scatterer at rl , the second scatterer at r

forth by pir s+ ,T,). This probabilicy density fun

1
written as

i
i
M

PIT.,T.,+--.T

N A by

- - -
RIS NP SIS SIS 4
L 172

"4
ALl

“
N
1

wn

where pi(r.} denotes the probability density of finding a scatterer
Y

denotes the conditional probability o

lal]

T, while p(f. 'T.
at i hile -(’3 ll
finding 3 scatterer at r, 1£ a scatterer 15 Xnown to be at = . A

<+ -
prime in the first expansion of Eg. (13) means r, is absent wi:

two primes in the second expansion of Eg. (1) means both E; and

E; are absen:.
If the scatterers are randomly distributed, the positions of all
scatterers are equally probable within the volume V accessible <C

the scatterers, and hence

where 2, is the unifeorm number density of the scatterers and i :is
the total number of scatterers. In addition, for nonoverlap of the
imaginary spheres circumscriding each scatterer we approximate the

conditional density as follows:
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ar - - b
n_ N £, -z, Za
Dwr, ' = o7
a El-rq 2a

The form
radially

or “hoie”

tions

tions

A

.CCat:

{¢]. The availakle volume Va for
o total volume U

e
nave been previous.y lccated s a

K

T n. For hard spheres, the minimum va.ue of

Y= Vo= ON=L % -rlayt = vil-8¢c), The maximum value 1S I2n
r s. Since this restriction aprlies only

tars of sgheres and dces not take into account %herr ohysical dimen-

1)

swons, =his model is exrected toO be

o
etter

when the spheres appear to te coint particles (see
3 realistic form 0f =he pair correlation function must Jepend on
concentrat:icn as well as the distance between zhe two scatterers
under considera%«ion. Twersky (2] has considered concentration
dependent pair correlat:ons and has extended zhe Zormalism to higher

concentrations in the Ravleigh regime.

ve denote the ccrnfigurat:onal average of a statistifal guantity

rn

as

“I. = .. ZpUEE...l L FE 0dTAF,, 0L EE {lga:

' ,
2,...,...,...ixw

<

where n Iz. (l8a) we have averaged over all tterers except the

sca
1~th and in Eg. (18b), over all scatterers except the :1-th and 3)-th,
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and so on.

cy density Given by Eg. (13) and using

Mulciplying both sides of Ecs.

w
(%

(l4da,d) bv the probactili~
gs. :16)-:18), we obtain =he

configurational average of b <
< g g ‘mpl _mp
. N - oo
: ik T = - - an :
St > =z @ 1g - = - e
oeln' 2 “aln't V- < - c.mp- -mp i3
1 =L, it pemaa Gy P s o
- -~ . - <l .
. mien et ATED p7en B
-mp -mp 13 " oln _. .mp _mp i3
‘n 2 . - sint -
- T-LA‘ s . Bux \ .
.mp Slmp1j_®ola'; dr, i19)
1 1k
e p = a7 "1 + . >
ela'’i Seln’ R -mp 12
oL, 12 R N 1
L owTin T S N sin ~Iini ST s
L ump «mp 1ij_ “eln’ .mp .mp 13}
~‘n‘22 : " sin -
e iR ced 5 AR L ar. (20)
mp smpii Aeln'! r: 29
where V' denotes

tne nole of radius

replaced by (N-1).

average with one scatterer fixed, viz., [(-b

the volume of the medium excluding the volume of
N

2a. For identical scat:erers, can be

3=l

Equations (19,207 indicate that the conditional

i i

>, ¥} L
mp i “Clmp it S

given in terms of the conditicnal average with two scatterers fixed,

viz., i(b;mp}ij

crystalline approx:i

]
(bump>ij

< >, .
Clmpij

1 1.

< v - o 3 3 -
c_mp ij zax [l0] has suggested a guasi

mation (CCA) to close the system:

. <bJ >
= ump g

»

} i3 1211
t

N 3 ;
= “Clmp’y!

The validity of this approximation is examined in Sect.on 8.
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4. THE JOHERENT WAVE

The heirarchy of equations :mplied by Egs. (19,20)

By invoking the 2CA, t.e., Eg. (J1). A clane wave soluticn ¢

2
equations Jiven by Egs. .19) and Q) 1s assumed, using an
e

[}
wave number X <o charace

rize the bulk med:.um:

PO P . iRez,
d = 15 % e -~
.mp 2 .mp
22
o = P e TR Ty
B T-T S -mp
vrera U o and I mp are unknewn constants. The effective wave

aumper K 1s assumed to bde parzllel =0 that of the incident wave

wniIn 1t the present case 1s along the z-axis. Since the svmmectr:

axes 2I the scatterers are also assumed garallel tc the z-axis, the

2ulxk medium Ls 1sotropic. Substitution of Eg. :(22) in Egs. .19 and

27 gives
2t giRery | ikl _N-l - - . P
cln oln v n.I,: P, M
- 1 . - 21
. K Tn *v . ‘T:in 122 Tin sen € v
. . -mp ~mp -mp -mp_ oln' ~mp .mp
it
JERELEY B i, . o¥'Ty gf (23a:
. =Mp; -mp, 04N ]
a’ iX.7, ix N-1 - -
12 e L ="l g ot =5 B i i, 1f
21ln eln n,7.c poms im
i :FfT:anllY . VT:Ln]lzz TB‘“n . p7in ZIY
R Lmp .mp Lmp wmp_ “eln’ ~mp .ap
gt -
- v 22 - \ L=
"IN " [a3tn b 1Kers = -
+ :Tump; “Jmpj eln' © J drJ 123b)

w~here S.P is the Kronecker delta and applies to the T-matrix ele-
L3 ¢

nents of rotationally symmetric scatterers, viz., nho az:imuthal mode
coupling.




Propugdcion crdractenstics 3t Jiscrere randinn media

It remains %o perform tne integraticn over V' in Egs. Jla,zi,
the details of which are given in Appendix A. Tc der:ve tne 3:s
sion relations, we apply the extincz:ion theorem to the =wWo sets £
cerms 1n Eg. (23) after integrat:on (each satisfying zhe wave 2gua-
tion with wave numbers X and k) as discussed in dezail by Twersky
(4} and varadan, Varadan and Pac (8]. Accord:ingy to che exs:yncticn
theorem the integral I_  which 1s evaluated over a surface S
crecisely cancels the incident Z.eld (see Appendix A!. 3y eqguating
the remaining terms, we obtain an infinite system of ecguaticns for
che unknowns:

' > had a+n .
S T e e i Penton v T
- ‘ka)“-(Ka)~ n=0 g=0 ‘= n-n’ P ®

. elnizl - . - 12

. I U . *
.oo(n.n PR Tolp, teo (BP0

(an (ReR' 00y 24a)

18
)
3
+
3
]

"'z - —fc - : Pl oy
(ka)“-i{Ka)" n=0 p=Q = n-n'’

‘meln’

. aoe(n,n',iﬁ + Tolp aee(n,n',~)l + 2

eln:

el ,ee(n,n PR IR (adb)

. ’(oe(n-n ) - T

We define ¢ as the effective "spherical” concentration which

3

eguals 4-a n°/3. The term (JH), is given by

(JH), = 2ka 3, (2Ka) hy(2Ka) - 2Ka h, (Zka) jl(2Ka) . (25)

The factors woo(n,n',x) and \oe(n,n',\) are given in Appen-
dix B. They are related to those given by Cruzan (17] which are
also summarized in Appendix B.

The set of equations given in Eg. (24a,b) are homogeneous and

linear in the unknowns (Y For a nontrivial solution, we

-
oln’%aeln’
reguire that the determinant of the coefficient matrix vanish which
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vields a relation for the effective wave number K 1n terms of K
and the T-matrix of the scatterer. This :is the dispersion relat.or
for =he scatterer-filled medium. Eguations (24a) and (24b) form a '
general exvression valid for any arbicrary collection of scatterers
orovided the scatterers are :dentical and rotationally symmetr:c
with parallel orientation along the K vector. Since the T-matrix
.s the only factor that conta.ns information about the exact shape
and boundary conditions at the scatterers, one can also use the
abcve formalism for a collection of perfectly conducting, dielectir:ic
or multi-lavered scatterers. The T-matrix for such various scat-
terers nas been studied by many authors (23,24,25].

5. LOW TREQUEMNCY SOLUTIONS

In the Rayleigh or low-frequency limiz, the size c¢f the scaz~
tere- : 35 considered to be very small compared to the :incident wave-
lengL... It is then sufficient to take oniy the lowest order coef-
€icients in the expansion of the fields. 1In this limit, the elements
of the T-matrix can be obtained in closed form for simple shapes
such as sphere and spheroid (22]:

22 s =1
mell "¢ _ 2. 37T 5,5 R
Sphere: Tell = 3 ilka) 77 J'k7a™) 26
o1y 22 tika)
s . ., ‘3
Spheroid: »Tell, R ST 27)

/ 2
where e is defined by e = ,(a’b)“-1 £for the oblate spheroid i'a
and 'b’ being the semi-major and semi-minor axes, respectively).

The functicns ¢ and f2 are given by

1

-1
£ le) = e - tan te - &+ Jk - tan (23a)
1 k] o e

+28b)

From Eq. (24b) and using leading terms of the T-matrix of OJ(k7a”™),
we obtain the following result for the unknown 2311=
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* Dispersion relations :ire obtained by substituzing Eg. (26) cr (27
in Eg. (29) and using the leading zerm .n the axpansion for the
Bessel and Hankel functions composing (JH) ., and (J4),:

2 2

S
. r
g2 Ls2e =5
Sphere: & = — (30,
1 - C;t—r;i'
Tre2
: -1
: r
. 2 ; (3¢, 2) 5:77 fz
Spheroid: 7 = \i o+ 3 5fr-l? !
{ l-L?’v:: "'4;51
r
D t
¢ 3y & ] et
( LJ ‘\Er*g‘fz :
« }l - T : . (30
1. 3.
' RS IR

Equation (20} is recognized as the dispersion relation of the
Clausius-Mossotti form.

If <he concentration ¢ << 1 , the dispersion relations simplify

= ¥ 3 (cr-l\
Sphere: ? = 1+ 3 ciir“: (32)
(9¢c/8) (;5:;252
. Spheroid: = = 1 + _T(_;T . I
Lor o

«Equation (33) can be written in terms of the forward scattering ampli-
tude F(0):
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which :n =his case .s val:id only for ver; _low zoncentrations and :.n
tne Rav.eigh limat.

6. DISPERSICON AT HIGEER FREQUENCIE

To study the dispersion at resonant arnd nijher Zreguencies, we
must consider higher powers of k& , and tn1i3 1mpl.es that a larce
number of terms ‘Yoln'zeln) must be «ept 1n tne expansion of the
average field. This 1s best dcne numerically. A bdlock diagram of
the FORTRAN program written for this purpose 1s shown in Fig. 3.
The blocks identify major subroutines which serform the £ollowing
functions:

MAIN The main projram sets up the basic lcops 30 as %0 Jaiculate
K for various frequencies (ka) and concentrations i¢)

RDDATA This subroutine 13 used to input data, e.3J., scatterer size '
\xa), concentration (¢}, matrix sizes, e%c.

RTINT This subroutine calcuiates %he init.al suess for X in the
Ravleigh limit at a given concentrat:on ¢ using Egs. .3C»

or (31).
TMAT This subroutine calculates the T-matr:x for given scatterer
shape and size (ka). Current maximum size is 40 « 40.

CGRTQ This subroutine searches for the root in the complex plane
{(given an initial guess) by attemgting to force the deter-
minant of a coefficient matrix (C) = 0.

AUX This subroutine gsets up the coefficient matr:ix according to
Egs. (24a,b). Maximum size .s 40 - 10.

AB This subrcutine calculates the factors ‘00’ "oe 28 given
in Appendix B.

TRIXJ This subroutine calculates the Wigner 3-) coefficients.

CXMTX This subroutine calculates the det C for a given K using
standard Gauss elimination.

The computational procedure 1s based on forming the coefficient
matrix C acccrding to Egs. (24a,b). For a given ka

, the roots
of the equation det C = 0 are searched in the complex K-plare
using an iterative root searching algorithm which employs Muller's
method. Good initial guesses for K were provided 1in the Rayieigh
limit by Eqs. (30} or (31), and these could be used systematically
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bution of dielectric spheres at ka = 11.8

RODATA
MAIN CGRTQ
IETINT TMAT AUX CXMTX
AB TRIX J
Figure 3. Block diagram of the computer program
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Figure 4. Attenuation vs concentration for a random distri-
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=¢ obtain convercence at increasingly higher wvalues of ka. 3imilar-

7, the dependence of X on concentration at a fixed frequenct

could be computed. The real part of XK , determines *-he

X
10
orase velocity while the 1maginary part, K, determines the

coherent attenuation.

7. COMPUTATIONS AND COMPARISONS WITH EXPERIMENTS

A major aim of the computat:onal methcd presented here :is o pro-
vide a means of studying the dispersion characteristics of discrete
random media at higher scatterer concentrations. Yery few laboratory
measurements Of coherent wave attenuation and chase shift can be
found in the open literature. However, results of two such experi-
ments are presented here [13,14] and compared with computat:ions.

The first exper.ment refers to the work of Hawlevy et al. [l3]
who measured the coherent wave attenuation and phase shift thrcugh a
random assembly of dielectric spheres (ar = 1.034) tlown about =v
turbulence producing fans. The measurements were performed at Z:xed
microwave frequency corresponding te xa = 11.8 and at various zon-
centration levels up to maximum packing.. The attenuation measure-
ments are shown in Fic. 4 together with computations using the
present theory and that used by Hawley et al. The present theory
agrees well with measurements up to ¢ = 0.32 , beyvond which the
attenuation is predicted to decrease and goes to zero at ¢ = 0,54,
The dashed curve is based on the concept of the "effective” concen-
tration which accounts for the decreasing ava:lable volume as the
number density increases. The "effective" ¢oncentration eguals
c’{l=-¢c) and the dashed curve in Fig. 4 reflects the attenuation
constant as a function of this altered concentration. The computa-
tions now agree well with the measurements. The conerent phase
shift, = , relative to free space 1s plotted as a funczicn of con-
centration < 1in Fig. 5 where the experimentally adjusted values
and the computations are in good agreement. Attenuation in the
Ravleigh limit (ka = 0.05) for the same scatterer properties 1s
shown in Fig. 6 based on the present theory. The computations fail
for ¢ ~ 0.125 since Im(K) becomes negative. This feature :s
repeated in the Rayleigh limit for other values of ip s shown
later. At very low concentrations, the form of the pair correlation
function as given in Eg. (17) seems valid. As the concentration
tncreases, the available volume for the other scatterers decreases.
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Assuming zhat the centers of 'N-l) scatterers are randomly located

in a given olume V, the minimum available volume Va for locat:ing

che center of the N=-th scatterer 1s V_ = YV - i *(Za)B(N-l\ = vil-3c'’

a 3
where .t 1s assumed that each scatterer center :s surrounded by a
hole of radius 2a and that these holes do not interpenetrate. Now
Va -0 as ¢ ~ 0.125 so this may explain why the computations
cause Im(X) - 0 for ¢ - 2.125 , at least in the Rayleigh limit.

F:gyure 7 shows computations in the Ravleigh limit for spheres with

"

r

.= 3.158 and ka = 0.05 compared with the analytical resul:ts o
Twersky (2] who obtained the leading effects of pair-correlation a

t

low f£requencies. His formula reduces o Im(K) = % notsw wherae

W = (l-c)4/(1+2c)2 ¢ M, 1S the number density and Ty 1S the
total scattering cross section of a lossless sphere. The agreement
is good for ¢ < 0.05 while great discrepancy 1s exhibited at
higher concentrations., The concept of the "effective" concentrat:on
does not significantly alter the results at such low concentrat:ons.
To obtain better agreement at higher concentrations it is necessary
t0 use a more realistic form for the pair-correlation function de-
fined in Eg. (17). A factor containing some dependence of

p(Ej ;1) on ;xj has to be introduced, but the form for th:s
dependence constitutes a difficult prchlem in statistical ceometryv
{181.

A second set of coherent wave measurements by Olsen and Kharadiy
[14] at relatively low concentrations (¢ = 0.007, 0.014) and at a
single microwave frequency (ka = 4.67) was available for comparison
with computations. Their measurement procedure, based on ensemble
averaging made on a random collection of dielectric spheres
tz_ = 2.26), exhibited greater control on the statistics of the
sc;:terez distribution yielding accurate measurements with low stan-
dard errors. Attenuation as a function of ka is shown in Fig. 8
at ¢ = 0.014. The experimental wvalue is also shown with its esti-
mated standard error. Figure 9 shows the same results at ¢ = J.0C7.
As expected, the agreement between theory and experiment is excellent
at these low concentrations. Figqures 10 and 1l show the phase shift
relative to free space as a funct.on of ka for ¢ = 0.014 and
n.0n7, respectively, together with the experimental values. Again
agreement 1s good and within the estimated standard errors. F:igure
12 shows the computation of attenuation vs. concentracion ac

ka = 4.57., The values based on single scattering theory, see

.
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2z. (34), are also shown <=cgether w.th the dasned curve pased >0 zhe
) " concentrat.cn concept. n this case, single scaztering
theorw seems o e ral:d for = 2.23. The computat:icns zause

Imxr . ) feor J.% wnile cne dasned curve Jdoes not exnizit

[}

thi:s phenomenon. Again, the validiry 5f che computat-.cns at hilzner

Joncentrations 1S not 2stablished. Previcus computat.ons Zresentec
5

e
i , 7! for concentrations of 0.20, as a funczion of ka :or
frequency), exhipit cerzain "null" characteristics Icr the attenua-
L1020 ac certa:in «a +alies. Thils chencmenon -s not real and s
saused Hy ImX; - ¢ 3t tnese values. However, tne COomputation
oresentad wn 6,7] for ¢ = 7.)33 and ).1) are :correcs
8. QUASI-CRYSTALLINE APPRCXIMATION gCA

It is instructive %o examine the ghysical implications 2f terms
2f «he form (bimp\zj that oczur in Eg. '21). This .3 tne exciting
£ield coefficient cf the ;-th scatterer when the dositions of all

scatterers except the 3-th and any other scatterer denotad Dy '
are averaged over. When the numbe. of par=icles 1in the sys

larze this may be thcught of as the field excit:ing zhe i-th s
terer in an effective, macroscopically homogeneous medium cC

WO scatzerers 'L’ and ';'. The QCA implicitly omists all multiple

scattering processes that can take clace between 'i' and '3'.
Efforss have been made %O restore such scattering processes ny
Twersky [2] and by Schwart:z and Ehrenreich {19! who, in a d:Zferent
context, discuss the contribution of clusters oI =wWwoO Oor more

particles as in svstems with shoret range order.

In the classical context, it 1s also i1mpertant to discuss the
dependence of QCA on the frequencies under cons:deration as well as
on the concentration of the scatt2rers. Scatter:ins in a two scat-
cerer configuraticn is Juite dependent on the ratio ¢f che distance
'2d' between the scatterers to the overall dimensiors '2a'’' c¢f the
scatterer., Numerical computations suggest tnat multifle scattering
effacts at any frequency of the incident wave will be smail 1f & a
1s large. Thus, the 2CA is expected to bte Jood for sparse concen-
~rasions, ~ l%. At such concentrations the pair correlaticn {unc-
tion as used in Eg. 17 is alsoc expected to be good. The analytical
resuits we obtain at long wavelengths give ample prcof of this as

shown 1n the previous sections. Most authors cited previously as

well as Taltot and Willis {20] in their recent work s@em to agree
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zrnat the CA 15 300d at sgarse concentrat:ons. However, most of

these papers cresent only long wavelengtn results. Further, lax .21,

commencts lmmediately following the def:inicion of <he 2CA zhat
z00d for dense systems and exactly +valid for systems with a

line structure. These are contradictory observatilons abcut the same

approx:mation and needs to bte studied fur<her.

Jur computations £or various concentIatlans, Lut MOre imporsanc-
~F

iy fer var:ous values xa ithe non-dimens:ional wavenumber) sug-
gest that even at low wvalues of «a 3.0, <zhe model Zfa:ls (I the

s
voiume concentrazion < exceeds 12.53%, whereas at kxa values .Z.
or more, the CCA leads =0 reasonable results for tne bulk grsraga-
tion constant at all values of the concentrazion .n spite of

poor model used for the pa.r correlation funczion. We expec: a

¥
t

types 2% multiple scattering effects including sluster effects =0 e
important at concentrat:ions 0.1 or more, but i1t should te ncted
that the ering

GCA type approximation neglectis on.y repeated scatteri
berween pairs or within a group oI scatzerers. I« 1s also important

<0 note that at wavelengths comparable tc obstacle size and hizh

®
0
0
b
o
o

t.e., Xa - 3.3 , the scattering 1s mostly in the forward dir
Thus, in thls case repeated scattering should not be important,

e the backscattered wave 1s s:gnif:canctly smaller than the for-
ward scattered wave. Thils would nelp sat:sfy the QCA and may ex-
glain wihy the compuctat:ions shown 1n Fig. 4 for xa = 11..3 are 1n
reasonable agreement with experiment at all values of the effective
concentration. It would appear that in the context of class:cal
systems, Lax's Statemen< about the validity of the QCA for dense
systems should be gualified by the phrase, 'at high frequencies.’
It would be interesting to study how tne results will change witih
improved models of che pair correlation functicn. Then :t would be
possible to comment on tae seasitivity of the results to the effect

of the pair correlation function and the QCA separatei:.

3. RECOMMENDATIONS FOR FUTURE WORK

It is obvious from the preceding discussions on the JCA as well
as the numer:cal results that the two major improvements reguired
are for the QCA as well as the pair correlation funcgtion, sc¢ that

" good results can be obtained for all concentrations even at .onc and

intermediate values of the wavelength. In a review article, lax

{21) has suggested that in the quantum mechanical conrext, =he 2CA
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could pe Lmproved by using modiiled propagators for the fie
~he c-lassical context, this :mpliles that cn the average, si
=zicle scattering takes place 1n a macroscoplcally homcgeneous
am, and, 10 tnis respect, this i1dea .s the same as the conerens
zotencial approximation [CPA) 2f Sol:d State Phys:ics. The regea
multiple scactering between pairs of scatterers or cluster effect
can te improved by maxing the sell consistent approximat:ic 3CAr n
addition to the CPA.

For =ne zurcose 0f discussion of these l1deas witnin the T-matrix
rmalism ziven earlier., we denote by E? and E?

2
~ered bv and excicing the j-th scatterer, respectively, The exp

an-
sicn cceff:cients of these fields as given in Egs. (5,6, are denoted
N ]
oy BJ ard b- , respectively, omitting all subscr:oprs.
The CPA can be expressed succinctly as
3d., = Ty onl- 351

M ]

where the T-matrix relat:ng <he exciting and scattered
cients 1S evaluated using the bulk propagaticn constant X  for cre
embedd.ng medium. Thus the CPA :mplies that the field scactered by
a single obstacle in the presence of several others when averaged
over the posizion of all scatterers is the same as the f:e2ld that
wouid be produced by a single particle embedded in a macroscopically
nomogereous med.um described by the preopagation constart K. The :in-
corperation of the CPA into the previcus formalism involves changes
cnly in the computations and a redefinition cf the T-matrix. It
would ke 1nteresting to see the change, 1f any, 1n tne numerical

computations as a result of invoking the CPA.

The 1dea ben:ind the 'self zonsistent aprroximat:icn' .SCA) :is
somewhat more subtle. From the discussion in the section ¢h the 2Ca,
1t 13 now clear that QCA-CPA neglects multiple scattering between
wwo fixed scatterers. The 5CA as defined by Schwartz and Ehrenreich
[19] restores £his by stating thatz

<B3> . = T(K) <bl>, 36)
ij 3

Pi

where T(X) 1is the 'T-matrix' of scatterer 'j' in the presence cf
scatterer 'i', in the effective medium with propagation ¢onstant XK.

Expressions fcr T(X) as given by Peterson and Strdm {l6] may be

wricten as
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TK) ® Rir_ _ 2. T[L ~ s=F, _,T:rz_ amT
(1. Iiep. JTRIE, M) Rief | D) -
i3 i3 L
where - 1s a compact notation for the translation matrices A anc
3 :wntroduced .n Eg. l10). The R matrix is simply the par: c? :
that :s regular at <he origin, 1i1.e., for . = 2. All maczr:ices
p
1 E3. 37 are obtained using the bulk propagat:ion constant icr zne
Sost medium.
‘We observe that T K) exgplicitly depends on r _ <he distance

-
1’ and ';' and hence will be :nvolved in %he integration

w1 Egs. AL=Al2). The integration procedure will nc loager be sim-
ple as before and the SCA may ose racther difficult to enforce in com-
gutaz:ions, especially if more real:istic models are chosen for tne

paLr correlat.cn function.

Improvements T Tile PAalr <orrelat:icn IuncIion must take inte
account the Lncrease 1n short range order with 1ncreasing concentra-
cion in addit:ion oo enforcing tne cerdition of no interpenexration
3% parricles. Talbet and Will:s [20] :in their recent workx nave re-
viewed several models thac Jdepend on concentraticn. They discuss
in particular two models by Matern (26 that derend on the concers
of an availatle volume and nence are al:d only €or = 12,34,
Talbot and Will:s 2130 suggest the Percus-Yevick [27) mecdel £or the

va.r correlation function which i1s valid feor ¢ - J.3.

Incorporazicn 3f the CPA as well as :mproved models of the rca:ir
correlation function Ln¥O Sur computatidns are in progress. We noge
that chey wiil shed some light on the sensicivicy of multiple scat-
tering thecries =0 approximations l.ke 2CA and 3CA as a function 29
frecuency and scatterer concentraction. Needless o say additional
experimental results are reqguired for comparison with these Zompu-

tations,

APPENDIX A

Consider the following integral which appears in Eg. :2la):

iRt
. n * 1 .=
_ip "olar ¢ dr] :
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~e Observe =hat A.'n. sontains a term sanL-L); winlch upon
oln cos 13

integration vanishes for #l. Also, onlv certain combinaticns cf

-,7 7ield a non-zero wvalue upCn 1ntegration LN CONJUNCLION wWith the
properties of the T-matrix elements for rotat.onally sy mmetric

scatterers. Thus the above integral reduces to evaluaticn of

oln R*E. _ n+n’
- L] / * .
YolpAoln'e dr] . Fent Yo e )Yolp
. -® nen S-S
v r -r, - za
T3
1Rt
* h ikr )P ‘cos- Ve -dr ALY
where the expansion for A°ln has been used and n,nt,
oln' oo T !
contains Jerzain combination of Wigner 3-3 symbols [l16]. Now, we
cons:der the integral in ‘Al)
| iE-E] -
. \ . “n-
IA = il e h,\srl:,P?(cos L:)drj . A2
rl-rj 2a
Since ¥ = xZ and ;3 = ;i -;x* . we expand exp!-1Kz+r ) in
terms of the spherical harmonics ’
z n
exp(-iKz+T _) = exp(=iKr ,cosc_ _) = ~ (=117 :%i2nelys_ Kz )
13 13 1 - n 13
n=Q
+ P_(cosz ) Al
a i
Substituting (A3) in (A2), we obtain
bs ' . 3 \ ) 2 T :
= ‘ Jn(xtxz)Pn(cos xj)ha(er; P (cos ;J)d 3 A4}
r..>2a
1]

Cbserve that =he two terms jn(Kr P and h fkr )P, satisfy the

13 'n : 1S}
scalar wave 2guation with wave numpers K and k , respectivelvy.

Defining
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w, = R o(kr _!P lcos?
: 1y 1

' ]
' o= (Ke 1P _.coss
a Ia ;0 3)
-2 L2 <2, 2
and using 1, = =x"2+. apnd 7 T -K S0 3n ‘A4, we opta.n
) S R 2 - -
I= LI - n ‘T Vo dr, AS!
e !
- 2 X=X - -
.‘J

Use of Green's theorem :n (AS) reduces -t to

where S_ refers to the surface of a sprere of larce rad:us cen-

tered around the )-th scatterer and S2a refers to the surface of

che hole centered around the 3-th scatterer. The integral over 523

zan be evaluated 1n closed form

N hd
- 3_T{x.) *(-mV(la)“sin_ _ a= _ d:,
n - 13 i3 12
where n 1s the unit outward normal <o 523. The above 1ategral
reduces to
2 3¢ LR
{2a) ' n 3 - . . . S
;f:;f W T T S TR ST, d'xj d':; 2
¥ s,
2a

Upon substituting the previously defined expressions for 1  and
3 and using the orthogonality of the Legendre polynomials in A7,

n
we get
8-a’ . 1 .
. T OB D 57T om (JHY | = 'JH) a Ad:
k=K :
. where {JH)‘ is given by Eq. (25) and T, 18 ~he Kornecker delta,

Hence, I defined in /A6) reduces o
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5
. g-a” .
. . . z 3
Ls L - == JH Lar ey - by
< -K
.’ 3 -
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The above factors can be expressed in terms of factors given by
Cruzan (17! as follows
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ABSTRACT

The coherent electromagnetic wave attenuation in an infinite medium
composed of a random distribution of identical, finite scatterers is
studied. A self-consistent multiple scattering theory using the T-matrix
of a single scatterer and a suitable averaging technique is emploved. The
statistical nature of the position of scatterers is accounted for by ensemble
averaging. This results in a hierarchy of equations relating the different
orders of correlations between the scatterers. Lax's quasicrystalline
approximation (QCA) is used to truncate the hierarchy enabling passage to
a homogeneous continuum whose bulk propagation characteristics such as
phase velocity and coherent wave attenuation can then be studied. Three
models for the pair correlation function are considered., The Matern
model and the well stirred approximation (WSA)} are good only for sparse
concentrations, while the Percus-Yevick approximation (P-YA) is good for
a wider range of concentration. The results obtained using these models
are compared with the available experimental results for dielectric
scatterers embedded in another dielectric medium. Practical applications
of this study include radar meterology and communications through

hydrometers, dust, vegetation, etc.




1. INTRODUCTION

We consider the propagation of plane coherent electromagnetic waves
in an infinite medium containing identical, lossless randomly distributed
particles. Our aim is to characterize the random medium by an effective
complex wave number K which would be a function of the particle concentration,
electrical size and the statistical description of the random positions of
the scatterers. The imaginary part of X describes the coherent attenuation
which is due to multiple scattering only since the particles themselves
are assumed to be lossless. The understanding of the behavior of Im(K) as
a function of particle concentration ¢ and/or frequency ka is very
important in many practical applications, including wave propagation in
the atmosphere and oceans and whenever distribution of random scatterers
influence electromagnetic wave behavior.

The theoretical formulation presented here closely follows the
procedure described in Varadan et. al. [1979] and Bringi et. al, [1981].
This approach is based on a self-consistent multiple scattering theory
and relies on the T-matrix [Waterman 1971] which relates the field
scattered by a particle to an arbitrary exciting field. The statistical
description of the random position of the scatterers is used to define a
configurational average which results in a hierarchy of equations relating
the different orders of correlations between the scatterers. Lax's
[1952] quasi-crystalline approximation is used to truncate the hierarchy
which results in the usual "hole-correction" integrals. Following Twersky
[1977, 1978 a,b}, a radially symmetric pair-correlation function 1s

introduced and approximate models are chosen from Talbot and Willis [1930].
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The "well-stirred" approximation (WSA) was used previously by Varadan

et. al. [1979] and Bringi et. al. [1981] which assumes no correlation
between the particles except that they should not inter-penetrate. In
particular, the WSA gives unphysical results for ¢ > 0.125 at the Raleigh
or low frequency limit.

In this paper, we consider two other pair-correlation functions,
viz. (i) the Matern [1960] model and (ii} the Percus-Yevick [1957] model
tor a classical system of hard spheres. Computations of Im(K) are presented
for dielectric scatterers in a dielectric medium, using the above three
models as a function of frequency and concentration. We also compare our
solution to some recent optical propagation experiments conducted by
Ishimaru [1981]. Sample computations are also presented comparing the WSA

and the single scattering approximation for a rain medium.

2. FORMULATION OF THE PROBLEM

Consider N identical, finite dielectric scatterers that are randomly
distributed either in free space or in a different dielectric medium. The
scatterers are homogeneous with a relative dielectric constant of € their

centers being denoted by 0 0,. 0., ..., 0 They are assumed to be bodies

| R

of revolution with symmetry axis parallel to the z-direction. Monochromatic

N

lane coherent electromagntic wave 1s assumed to propagate along the svmmetrv
=3 IS > P -

axis of the scatters to satisfy the condition that the efrective medium be
isotropic and polarization insensitive. The time dependence of the incident

field and hence the fields scattered by the individual scatterers is all of

the form exp(-jwt) and this is suppressed in the equations that follow.




Even though the theory presented here is valid for spheroidal scatterers
(Varadan, et. al. 1981], we present numerical results only for spherical
scatterers in order to compare our results with available experiments.

=0 - - . L
Let E7(r) be the electric ficld arising from the incident plane wave

1

and E.(;) the field scattered by the i-th scatterer. Both these fields

-

satisfy the vector Helmholtz equation. The problem at hand reduces to
computing the total wave field at any point outside the scatterers,
satisfying the appropriate boundary condition on the surface of the scatterers
and radiation conditions at infinity.

The total field at any point outside the scatterers can be interpreted
as the sum of the incident field and the fields scattered by all the

scatterers, which can be written as

(D

1
*.H
aki

> > -0 -
E(r) = E (t) + i :

i 1L

-5 > . -
EY (oi) ;0.

i=1

*S - . . . .
where El(oi) is the field scattered by the i-th scatterer at the observation

point ;. However, the field that excites the i-th scatterer is the incident
field EO plus the fields scattered from all other scatterers except the i-th.
The term exciting field E® is used to distinguish between the field actually
incident on a scatterer and the external incident field EO produced by a
source at infinity. Thus, at a point T in the vicinity of the i-th

scatterer, we write

>0 - >0 ~ N +S R
E(r) =E(r) + ) E(p.) ; ac=xfo.] <2a )
1 iFi 3 J

:_ . o
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where 'a' is a typical dimension of the scatterer.
The exciting and scattered fields for each scatterer can be expanded

in terms of vector spherical functions with respect to an origin at the

center of that scatterer:

2 » b >
. >e > _ T S‘ “ z i . .
. E(r) = . ) 7 ) ! Re 5. ()
. =1 =1 n=0 o=l ting tinc 71
(3)
= z bl Re :51
m T
n
=S = ~ io~i
ST Pt )
n |
where the vector spherical functions are defined as
> > > . (1) i
Plang(F) = Tx [y (km)] Y, ((3,0) 5)
~ > _ 1 - _,, -> .
P2i0 ) T KT X Ppanc () (6

In equations (3-6), k is the wave number; hgl) is the Hankel function of the

first kind and the Yln0(6’¢) are the normali:zed spherical harmonics defined

with real angular functions. In Equation(3), the exciting field is expanded
in terms of the regular (Re) basis set (Re $in) obtained by replacing hﬁl) in
Equations (5-6) by jn’ the spherical Bessel functions of the first kind. Thus,

the choice of the basis set in Equation (4) satisfies the radiation condition

at infinity for the scattered field, while the choice in (3) satisfies the
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regular behavior of the exciting field in the region a < |pil < 2a. The
superscript i on the basis functions refer to expansions with respect to
i i - . .
Oi’ and brn and Btn are the unknown exciting and scattered field coefficients.

We also expand the incident field in terms of vector spherical functions:

0 - ikz.T. i -
= 1 ' (A
E(r) =e U% a_ Re . (3)) (7)

where a . are the known incident field coefficients.

The unknown coefficients bin can be related to Bin by means of any
convenient scattering operator, in this case we employ the T-matrix as defined
by Waterman [1971]:

i i i
Bin = ,t'n’ bl - (8)
Substituting Equations (3), (4) and (7) in (2), we obtain
i i ikz.rs »i N i+
Y b Rey. =e i} a_Rey__+ 3 ) B ¥ (9

T ™m ™mn n e
™m ™ j#i 1n

Since the field quantities are expanded with respect to centers of each
scatterer, we obtain Equation (9) with basis functions expanded with respect
to i-th and j-th centers. In order to express them with respect to a common
origin Oi’ we employ the translation and addition theorems for the vector
spherical functions [see, for example, Bostr;m, 1930]

which may be written in a compact form as follows

e e e - e o
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- Ed
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where p,. = r . -r, is the vector connecting 0., to 0., ¢© ., is the
ij i j i n,t'n
translation matrix for the vector functions and R is a matrix with

tn,t'n'

spherical Hankel functions in ¢ replaced by spherical Bessel functions.

mn't'n’

Employing Equations (8) and (10) in (9) and using the orthogonality
of the vector spherical basis functions, we obtain the following set of

coupled algebraic equations for the exciting field coefficients bin:

- . k -
i ikzer;
b = e 1 a

s\ j
n ™ (pij)T br'n' (11)

c
rzn' m,t’'n’ tn,t'n’

1.

+
N g g

From Equation (11), it can be seen that the exciting field coefficients
of the i-th scatterer explicitly depend on the position and orientation of
the other scatterers. In this paper, we consider a random distribution of
spherical scatterers and the case when N + « and the volume occupied by the
scatterers V -~ = such that N/V = n, is a finite number density. For such
distribution, a configurational average of Equation (l1) can be made over
the positions of all scatterers [see Varadan et. al., 1981] with QCA
[Lax, 1952] to arrive at an equation for the configurational average

<b:n>i of the exciting field coefficients with one scatterer fixed:




where p(;jl?i) is the two particle joint probability density. In obtaining

the above equation, we have assumed that all the scatterers are identical.

We now assume that the average field <b1n>i {the coherent field)
1

- . . . -> . -
propagates in a medium with an effective complex wave number K = (K1+1K7)z

. in the direction of the original incident field in the discrete random
medium:
) i KT
i . i Ker;
= 1 3
bloml>i t Ylaml € (13)
i 2 iK-T
i . iKer;
< = 1 ,
b20ml>i ! YZcml © : (14)

Substituting Equations (13) and (14) in Equation (12) and invoking the
extinction theorem to cancel the incident wave term in (12), we obtain

the following equations for the unknown amplitudes Y and YZ

{omz omg

n+n' n
iPe-n I
1 p=1 m={n-n'|

1o\ 11 20 \ 21
{Ylllp [(lep) by (nontm) *(lep) Xy (mon’sm)

(15)

1en \ 12 . 2%n 22 , .
* Ya2ep [(TZEn) vy (mn "“)*(Tzzp) Xz) (7.0 "“)]} ;
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(kaf - (Ka)

3R J K- [
{2ka im (2Ka} hm(-ka)

(17)
-2ka h_(2ka) j!(2Ka)] + 24c x£1 Clgx)-1] h (kx) j (Kx) dx

. ' - ' _ _;n'-n+m (2m+1) (2n'~+1
yll(nln 1m) ‘P:Z(n,n )m) - 1 [ }

2n' (n'+1)
. 1/2
[ %%’1)—1)’] [neen) + 0' @) - menen)] (18)
n n' m n n' m
0 0 0 1 -1 0
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n{n+1) - yoo L2
[nl(nl,l)] ['1‘. -\n-n').’ nen'+1l:2-m \ 119)
n n' m- [ n n' m
0 0 0 1 -1 0

In the avcve equation, ¢ = 4= nOaS/S is the effective spherical concentration.
For plane waves propagating parallel to the rotational axis of symmetry of
scatterers, only & = 1 contributes, and also only ccrtain combinations of o
vield non-zero i-matrix elements which are used in Equations (15) and (16).

In Equation (17), g(x) is the pair correlation function which depends only

on ;;i = {Ei.l due to translational invariance of the system under consideration.
To obtain expressions for g(x), a description of the interparticle forces is
needed. In our statistics, the dielectric scatterers are assumed to behave
like effective hard spheres of radius 'a' where 'a' is the radius of the
circumscribing sphere, see Figure 1. Wertheim [1963] has obtained a series
solution of the integral equation for the pair correlation function derived by
Percus and Yevick [1958] for an ensemble of hard spheres. Throop and Bearman
[1965) have used the Wertheim result and provided tabulated values of g(»)

as a function of x for several values of c¢. Plots of g(x) vs x is shown in
Figure 2.

At low values of concentration ¢, g(x) = 1, see Figure 2 and hence the
integral in Equation (17) is negligible which results in a system of uncorrelated
hard particles. This is what has been referred to as the well stirred
approximation (WSA} and vields the 'hole correction integral' as outlined by

Fikioris Waterman [1964] and by us earlier. 1If g(x} > 1, one can reyard the
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Equation (17) as a modified 'hole correction integral' which is of the same
form as used by Twersky [1977, 1978].

Equations (15) and (16) are simultaneous linear homogeneous equations for
the unknown arplitudes Yrcmi' For a nontrivial solution, we require that

the determinant of the truncated coefficient matrix C vanishes, which yields

an equation for the effective wave number K = (K1+iK7) in terms of k and the

T-matrix of a scatterer. This is the dispersion relation for the scatterer
filled medium. The real part of K relates to the phase velocity while the

imaginary part relates to coherent attenuation in the medium.

3. NUMERICAL COMPUTATIONS

In the low concentration limit, ¢ - 0, it is well known that the single !

scattering approximation (SSA) is valid so that Im(K/k) is given by

Q

ext

Im(K/k) = =

d (20)

|t

"
where Qext is the normalized (with respect to ma”™) extinction cross section

of a sphere of radius 'a'. An important problem is propagation in a rain
medium where the single scattering approximation has been widely used. Indeed,

even under very heavy rain, the concentration rarely exceeds 0.0l and is

typically around 10-4. We have compared our theory using WSA with Equation
(20) for a distribution of spherical water drops of radius 0.1 cm with ka in
the range 0.1 < ka < 3. The refractive index, which is a function of frequency,
is taken from kay (1972]. In Figure (3), we show the attenuation constant y
_2 -3

defined as 4n Im(K)/Re(K) as a function of ka using the WSA for ¢ = 10 =, 10 7,

and 10_4 which is to be compared with Figure (4) which uses SSA. We note that
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both solutions yield nearly identical results. In Figure (5), we show
computation of y vs concentration for different ka values using the WSA.
Again the SSA is seemed to be excellent for the rain medium.

We now present computations for a random medium model used by Ishimaru
[1981] for the optical propagation experiments. The scatterers are latex
spheres of diameter 0.107u immersed in water with incident wavelength
A = 0.6u. In the Rayleigh limit, Twersky [1978b] has given an expression for
Im(K/k) by considering the leading effects of the pair-correlation:

3 Er-l
T

where €. is the relative dielectric constant and W is the packing factor
given by
(1-0)* T2 ;
W=-~~—~4— =1+ 24c¢ f x“{g(x)-1] dx . (22)
(1+2c)2 o]
In Figure (6), we show Im(K/k) as a function of concentration c¢ using Equation (22)
and the present theory employing the WSA, the P-YA and the Matern model. The
Matern [1960] model is completely analytic and is valid for ¢ < 0.125. We note
that Equation (22) and the P-YA are identical while both the Matern model and
the WSA fail for c=>0.04, and in fact they give unphysical results for
¢ > 0.125.
In Figure (7), we show the comparison between the computation and the
two measured values at ¢ = 0.01 and 0.10 given by Ishimaru [1981]. We note
that the ka value is 0.56 and that multiple scattering effects are seemed to

be important even at ¢ = 0.0l. The measured values at ¢ = 0.0l and 0.1 are in
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very good agreement with both the WSA and P-YA while the SSA consistently
overestimates the effective coherent attenuation. Also, for ¢ > 0.10 where
measurements are not available at the present time, we feel that only the
P-YA predicts the correct behavior of Im(K/k). In Figure (8), we show the
variation of Im{K/k) with ka for ¢ = 0.21 and compare the results using the
SSA, the WSA and the P-YA. Va.ues for the WSA for ka < 0.75 are not shown
since the solution fails [Im(K/k) < 0] in this region. However, as ka
increases it appears that the WSA tends to merge with P-YA for ka > 3.0.
The SSA on the other hand predicts a higher attenuation than either the WSA

or the P-Ya.

e 44J-h--I.-Illﬁiﬁi:ﬁiiii::i:::Eﬁ-‘-;;;4 S sorrears
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very good agreement with both the WSA and P-YA while the SSA consistently
overestimates the etfective coherent attenuation. Also, for ¢ > 0.10 where
measurements are not available at the present time, we feel that only the
P-YA predicts the correct behavior of Im(K/k). In Figure (8), we show the
variation of Im(K/k) with ka for ¢ = 0.21 and compare the results using the
SSA, the WSA and the P-YA. Values for the WSA for ka < 0.75 are not shown
since the solution fails [Im(K/k) < 0] in this region. However, as ka
increases it appears that the WSA tends to merge with P-YA for ka > 3.0.
The SSA on the other hand predicts a higher attenuation than either the WSA

or the P-Ya.
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Abstract

A scattering matrix theory is presented ftor studying the multiple
scattering of both longitudinal and transverse elastic waves in a mediunm
containing a random distribution of inclusions or voids of arbitrary shape.
A statistical analysis with QCA and Percus-Yevick pair correlation function
isthen emploved to obtain expressions for the average amplitudes or the

coherent fields which may be solved to yield the bulk or effective properties

of the inhomogeneous medium. Suggestions for incorporating CPA in conjunction
with QCA so that materials with dense concentration of inclusions can be

considered are also given.




Introduction

In recent years, considerable effort has heen devoted to promoting
the development of elastomeric absorbing materials, containing a
distribution of cavities and inclusions, which are bonded to submerged
structures to control the sound radiated by these structures as well as
to modify their acoustic reflection characteristics (echo reductionY. To
use such absorbing lavers, it is important to determine how their physical
properties such as density, thickness and effective elastic moduli, and
material compositior such as distribution and orientation of the inclusicrn:
and their size distributions afrect the acoustical behavior of any actual
sturcture coated with that material.

The waves incident on such inhomogencous media undergo multiple
scattering due to the presence of inclusions thus reducing the scattering
amplitude or cross section by absorption and attenuation of waves. The
attenuation depends critically on the material properties of the hust
medtum (matrix) and inclusions, the distribution of the inclusions and the
frequency of the incident wave. The problem is verv difficult and to our
knowledge, rigorous theories with numerical results are not avatlable 1n
the literature.

In multiple scattering theories, approximations are usually made at
a very early stage for a) the geumetry of the inclusicr, b) the size of
the inclusion relative to the wivelength of incident wave, and o)
distribution of the 1nclusions in the matrix mediun,  The approvimations
with respect to geometry and size are relured. It the anclusion is small

compared to the incident wavelength, it i3 not possihle o "seo™ exact
g {




details of the inclusion and usually one is content to obtain the gross

scattering properties of the inhomogeneous medium. This is the so-called
Rayleigh or low frequency limit, and yields corrections to the solution
for point scatterers. As far as the distribution of the inclusions is
concerned, one either has regular arrays of inclusions or 4 random
distribution. In the former case, one performs a lattice sum while in
the latter case, one employs a configurational averaging procedure. If
the concentration of inclusions is small, i.e., the inclusions are sparsely
distributed, we may use a single scattering or first Born approximation.
Approximations have been employed by many authors and the correspond.n:
effective properties of the medium were studied at the low frequencies and
low concentrations, see for example, Waterman and Truell (1], Merkulova [2],
Chaban [3,4], Chatterjee and Mal [5], Domany, Gubernatis and Krumhansl [6],
Korringa [7], Kroner {8], Datta [9] and the references therein. Actually
the real problem warrants a rigorous multiple scattering theory and a
computational approach to study the frequency dependent properties of the
inhomogeneous media which will be valid for frequencies comparable to
scatterer size and for a wide range of concentrations, shapes and sizes.
Recently, the present investigators have developed a multiple scattering
formalism by introducing the concept of a T-matrix for individual inclusions
that makes the formulation more general and applicable to a variety of
different scatterers, see Refs. [10-20]. The method also lends inself to
numerical computations for higher frequencies of the incident plane wave as
well as more realistic geometries for the inhomogeneities. The dvnamic

elastic properties of composite elastic media have been studied in [20]

using this formulation, and the concept of an average frequency dependent




elastic stiffness tensor following the work of Bedeaux and Mazur [21],

and Varadan and Vezetti {22]. The results seem to be promising for future
research in this area. In Ret. [10], we have shown that a Clausius-Mosotti
type formula for the average sheusr modulus can be recovered in the low
trequency limit. For higher trequencies, we have obtained the dynamic
properties for a range of frequencies. The extension of the theory
presented in [20] to acoustic and elastic wave scattering will be useful
for Naval applications.

The present state of the art is as tollows: the statistical considerations
seem to be the most difficult for three dimensional inclusions and the least
amount of progress has been made in this area. 4.1l formalisms that involve
ensemble averaging result in a heirarchy of equations for the average fields
that involve higher and higher order correlation functions. This heirarchy
must be truncated in some fashion. Foldy [23) approximated the field incident
on a scatterer by the average field itself. Lax [24] was the first to use
a quasi-crystalline approximation which involves the two particle correlation
tunction. At the moment, only the 'hole correction’ has been taken into
account in a systematic way. Bose and Mal [25] have tried correlation
functions that fall off exponentially with distance. Recently, Twersky [lo]
has used the scaled particle equation cf state of a gas of hard spheres to
obtain improvements to the hole correction integral. The T-matvix formalism
employs Lax's quasicrystalline approximation (QC\), the hole correction
integral and results in a set of equations that must be sclved in a seif-
consistant manner.

In this paper, a radially symmetric pair-correlation function given

Percus-Yevick (P-YA) integrval equation [27] is introduced which gives




improvements to the hole correction integral. The "well-stirred" approximation

(WSA) was used previously by us which assumes no corretlation between the
scatterers except that they should not interpenetrate. The W5A seems to
depend on concentration and frequency. At low trequency or Rayleigh limig,
WSA gives good results up to concentration, ¢ < 8.04 and unphysical results
for ¢ > 0.125 [28], However, at higher frequencies and higher concentration,
the WS\ with quasi-crystalline approximation (QCA) yields better results.

At resonance frequencies we note that P-YA is so far the appropriate

correlation function to be emploved [29-31].

Formulation of the Problem

Coosider N identical, finite elastic inclusions that are randomly
distributed in a different elastic medium, see Fig. 1. The scatterers are
homogeneous with elastic properties given by Lame's constants \1 and Eh and
density Oy~ The properties of the outside medium (call matrix) are given
by A, uwand »o. In Fig. I, Oi and Oj refer to the center of the i-th and j-th
scattevers, respectivelyv and theyv are referred to the origin 0 by the
spherical polar coordinates (ri, ei{ ¢i). P is any point in the medium
outside the scatterers (the matrix medium).

A time harmonic plane wave of unit amplitude and frequency . is
incident on the medium such that the direction of propagation of the incident
waves Ls along the z-axis, which may be written in terms of displacement
field vector GO

o irkoamr i(kEe )X (n

u (r) = e : + e




where k_and k_ are the compressional and shear wave numbers ziven by
b1

K =w/c ; ¢ = vyl {3)

and t is the time. The waves incident to the discrete random media will

. B -+ - . .
undergo multiple scattering. Let ui(r) be the field scattered by the i-th
scatterer. The incident and scattered fields satisfy the vector Helmholt:

equation. The problem at hand reduces to computing the total wave field

‘

at any point in the matrix medium and hence the bulk properties, satistving
the appropriate boundary condition on the surface of the scatterers and
radiation conditions at infinity.

The total field at any point in the matrix medium can be interpreted
as the sum of the incident field and the fields scattered by all the scatterers,

which can be written as

WE = W@ e 1 W) 5 b, = Ter, (4)

W {~12

[N

.. . . . o . -0
However, the field that excites the i-th scatterer is the incident field u
plus the fields scattered from all other scatterers except the i-th. The tern
L - »e . o . C C
exciting field u~ is used to distinguish between the field actually incident

S - +0 .
on a scatterer and the external incident field u” produced by a source at

infinity. Thus, at a point r in the vicinity of the i-th scatterer, we write
N
e ~0 - 2 s - C L ;
u dry = u (r) » »» ulo) ; a LD 2a =L
1 izp 4 -




where 'a' is a typical dimension or the scatterer.

The exciting and scattered fields for each scatterer can be expanded
in terms of vector spherical functions with respect to an origin at the

center of that scatterer:

2 » i 2
i = LT T Ty Re v , (T3 = T bl Rel (6
1 = T “ - TiNC Tino 1 - in n
=1 =1 n=0 <=1 n
s > i
©@m =Y B )
i - m “In
n
where Y in= (x = 1,2,3) are the vector spherical vector basis functions [19].

Field quantities that are regular at the origin are expanded in terms cf the

regular (Re) basis set (Re ; ) obtained by replacing the Hankel functicn

ins
of the first kind, hn’ in the above equations by the spherical Bessel functicns
jn of the first kind. In Eq. (7), we abbreviate these vector basis functions
as : = Zrn. We note that Eln is for the longitudinal part while I:n
.d an for the transverse parts. The choice of the basis set in Eg. (7)
satis©ies the radiation condition at infinity for the scattered field,

while the choice in Eq. (6) satisfies the regular behavior of the exciting
field in the region a < I;i{ < 2a. The superscript i on the basis functions

N : . ! i
refer to expansions with respect to Oi’ and an and Brn are the unknown

exciting and scattered tield coefficients. We also expand the incident

field in terms of vector spherical functions:
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t 37 ) ) — 1 Re v, . [: +5(s+1)8
21 sS1 eIl s{s+1} i 2ts t,l t,—l]
1 >1 R )
* kg Re 3¢s [ 6t,l s(s+1) Vt,-l]( (8)

where émn is the Kronecker 8. For the sake of simplicity, we write the

incident wave field in terms of expansion co-efficients a_, as follows
1
. >
~0 _ ¢ i PkeeTy
u o= a__Re . _ e 9
= ™ Yin (9)

where a__ are the known incident field coefficients.
L
e i i -
The unknown coefficients an can be related to Brn by means of any

convenient scattering operator, in this case we employv the T-matrix, see

Ref. [32].

T! bt ) (10)

Substituting Eqs. (6), (7) and (8) in (5), we obtain

1k_z.r. N . .
Tob. Redl o=e Y 0PT Reyt o+ Vo7 gl (i1)
™ n In . m “tn
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Since the field quantities are expanded with respect to centers of each

scatterer, we obtain Eq. (9) with basis functions with respect to i-th

and j-th centers. In order to express them with respect to a common
origin Oi’ we employ the translation and addition theorems for the vector
spherical functions [33] which may be written in a compact form as follows:

Pl FFH- T o (* -%.) Re 3} ) (12)
; Tn t'n! 1] “t'n’

Employing Eq. (12) in (1l1) and using the orthogonality of the vector
spherical basis functions, we obtain the following set of coupled algebraic

equations for the exciting field coefficients bin

g j > = <
v B inr % nt,n (r; rj) (13)
With the scattered field coefficients Bin expressed in terms of exciting
field coefficients bin and the T-matrix as given by (10), Eq. (13) gives
the exciting field formulation of the multiple scattering. If we multiply
both sides of Eq. (13) by the T-matrix, then we obtain the scattered field

formulation of multiple scattering which may be written as

gt =gt o v b Ta expri B
™ n g L Tn T'n T
N J > >
Y -
* J;L r}':n' BT'n' or'n',r"n” (rl r])] . (14)




From Eq. (14), it can be seen that the scattered field coefficients
the i-th scatterer explicitly depend on the position and orientation
of other scatterers. In this paper, we consider a random distributicn
of spherical scatterers and the case when N -~ «» and the volume occupied
by the scatterers V + » such that N/V = nO is a finite number density.

For such distribution, a configurational average of Eq. (14) can be
made over the positions of all scatterers [28-32] with QCA [24] to arrive
at an equation for the configurational average <Bin>i of the scattered

field coefficients with one scatterer fixed:

in,t''n” ar”n”

£ (N-1) ) f p(¥j{?i)<sjn>j a (15)

T’n' T“n” dr]
n' Vv

where p(;jl;i) is the two particle joint probability density.

The joint probability density is defined as

Lo 2y o 32052
v g(]rj o [rj rio>2a
-
p(rj[ri) i - >
0 ; Irj—rlf > 2a

Equation (16) implies that the particles are hard (no-interpenetration) and
the excluded volume is a sphere of radius 'a' although the particles

themselves may he non-spherical. The function g(l;j-?ii) 13

-

. . . . g
called the pair correlation function and depends only on 1ri—rif due to




translational invariance of the system under consideration. The pair
correlation function for an ensemble of particles depends on tl= nature
and range of the interparticle forces. The average of several measurements
of a statistical variable that characterizes an ersemble will depend on
the pair correlation function. To obtain expressions for the pair
correlation function, one needs a description of the interparticle forces.
In our case we assume that the scatterers behave like effective hard
spheres (where the radius 'a' is that of the sphere c¢ircumscribing the
scatterer). Percus and Yevick [27] have obtained an approximate integral
equation for the pair correlation function of a classical fluid in
equilibrium. Wertheim [34] has obtained a series solution of the integral
equation for an ensemble of hard spheres. The statistics of the fluid

are then same as those of the ensemble of discrete hard particles that

we are considering.

Although integral expressions for the correlation functions also
result in a heirarchy, Percus and Yevick have truncated the heirarchy by
making certain approximations that result in a self-consistent relation
between the pair correlation function g(x) and the direct correlation
function C(x). The direct correlation function may be interpreted as
the correlation function resulting from an 'external potential’ that
produces a simultaneous density fluctuation at a point and the external
potential is taken to be the potential seen by a particle given that
there is a particle fixed at another site. Fisher [35] comments that
the Percus-Yevick approximation is a strong statement of the extremely
short range nature of the direct correlation function. The integral

equation has the form




\‘

10
T(x) =1+n_ [ t{x')dx' - n S T(x')T(x-x")dx' (17)
o} o}
x<2a x'<2a
[x-x'{>2a
where
. T(x) = g(x) ; x> 2a
g(x) = 0 7 X < 2a
(18)
t(x} = -C(x) ; x < 2a
C{x) = 0 ; X > 2a
Wertheim [34] has solved the integral equation by Laplace transformation
that results in an analytic expression for C(x) in the form
-4 Ay 2 1 2 2 3, ,
C(x) = -(1-n) [(1+#2n) " - 6n(1+§ n)"x + n{l+2n)" x7/2] ; n = c¢/8 {19) '

where 'c' is the effective spherical concentration of the particles. The
Percus-Yevick approximation fails as the concentration apvoroaches the
close packing factor for spheres and is expected to be good for ¢ < 0.3 or
0.4.

Equation (19) can be substituted back into Egq. (17) to vield a

series solution for g(x) in the form [34]

{20

where

1 t(x-n) ) }n
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where

; 2.5 2 2
S(t) (1-n7)t” + 6n(l-n)t + 18n"t-12n(1+2n) (22)

and

L(t)

i

120 {(1+n2)t + (1+2n)] . (23)

Throop and Bearman [36] have tabulated g(x) as a function of x for values
of n = ¢/8. A few representative plots of the pair correlation function
are shown in Fig. 2.

To solve the integral equations given by (15), we consider the
inhomogeneous medium with discrete scatterers as a homogeneous continuum
and assume that the average coherent wave is a plane wave propagating
with an effective wave number K in the same direction as the incident

plane wave. We can thus write

where th is the amplitude of the coherent wave.

Substituting Eq. (24) in (15) employing the joint probability functiecn
as defined before and the divergence theorem to convert the volume
integral in (15) to surface integrals and using the extinction theorem

which cancels the incident wave, we obtain a set of simultaneous coupled

homogeneous equations for the coefficients Xrn given by




3 < . . . . .
where ¢ = 47 a no/o is the effective spherical concentration of the
scatterers per unit volume, c? is an expression containing Wigner

coetficients, and

' = _—6;______~ , 3 I - [N
) Iq(K,kr,c) = 3 5 [Zkra Jq(bka) hq(-kra)

(k a)"-(Ka)~

-2Ka h (Zk_a) j (2Ka)]+ 24c
g FR?) g (2Ka)] ‘f

2
x"[g(x)-1] h (k_x) j (Kx) dx (26)
1 q T q

At low values of concentration ¢, g(x) = 1, see Fig. 2, and hence the

integral in Ea. (26) is negligible which results in a system of uncorrelated

hard particle statistics. This is what has been referred to as the 'well

stirred approximation’ (WSA) and yields the 'hole correction integral' as
outlined by Fikioris and Waterman (37] and by us earlier. If g(x) > 1,
one can reygard the Eq. (26) as a modified 'hole correction integral’ which
is of the same form used by Twersky [26].

Equation (25) is a svstem of simultaneous linear homogenecous equations

for the unknown amplitudes Xrn' For nontrivial solution, we require that
the determinant of the truncated coefficient matrix vanishes, which yvields
an equation for the effective wave number K in terms of kT and the T-matrix
of the scatterer. This is the dispersion relation for the scatterer
filled medium. Equation (25) is a general expression valid for any
arbitrary shaped scatterer, since the T-matrix is the only factor that
contains information about the exact shape and boundary conditions at the
scatterer. Thus the formalism presented here is valid for all the three

wave fields. The eftfective wave number K obtained in the analysis is a




oy

complex quantity, the real part of which relates to the phase velocity,

while the imaginary part relates to attenuation of coherent waves in the

medium,

Results and Conclusions

In the Rayvleigh or low freguency limit, the size of the scatterers

It

is considered to be small when compared to the incident wavelength.

is then sufficient to take only the lowest order coetficient in the

expansion of the fields. In this limit, the elements of the T-matrix can

be obtained in closed form for various simple shapes (46). It can be

X_. and XT of Eq. (25)

shown that at low frequencies, only XTO, X 1

make a contribution. After some manipulations of the resulting
3 x 3 determinant, we obtain the following dispersion relations for

elastic spherical inclusions embedded in a difrerent elastic medium

(matrix):

E, 3k
K 2 (l+9C El)(1+3c EO) 1+3¢ Tz (2+ — )
s 3 3h* =
$ 1-15¢ E, [1’3C EO} + S CE 2y —=
2 R 5 2
p
K 2 (1+9¢ El) 1+ 3 C E2 2+ T
—S' = e — L = ‘.’%‘
K : 5 BT (28)
5 s
’ v 7o B4 =)
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: . 1 3X+2u—(3xl+2ul)
0 3 4u+3xl+2ul
o}
21 1
By - b
(29}
4
—_— - 2 - - A 2 i
. 3 H(ul v) -4ul(ul W) (A1+_,1) (19U1+16p)

19

1 - - ﬁ N
24L1(U1 u) (A1+-u1) (19u1+16u)

1
X 4u(ul—u) + 3(A+2u) (2u1+3u)

and ¢ = 4w33n0/3 is the concentration of spheres, and Kp and KS are the
coherent wave numbers for longitudinal and shear waves, respectively, in
the new medium. Similar expressions can also be derived for spheroidal
inclusions using the T-matrix obtained in Refs. [32,38]. In the Ravieigh
limit, the value of K as determined by the above dispersion relations is

a real quantity for lossless (elastic) material and a complex quantity for
lossy (viscoelastic) material, and relates to phase velocity Vp = Ww/K.

In this limit, we normally study the dependence of phase velocity on
concentration, angle of incidence and aspect ratio of * = scatterers. The
teneral tendency of the phase velocity is to in. oase o Zhtly (for
inclusion) and decrease slightly (for cracks and cavities) as concentriation
increases. Thus, the phase velocity vs. concentration informition 1< not

very usetul both from theoreticul and experimental point of view. The




plots of absorption and coherent attenuation due to multiple scattering

vs. frequency for various concentrations carry more information which may
eventually be used for designing absorbing materials [39].

The dispersion relations given in Eqs. (27) and (28) may also be
useful in obtaining the effective shear modulus and bulk medulus at low
frequencies. Following the work by us {20,22] and by Bedeaux and Mazur 7217,
we arrive at the following shear and bulk moduli (<u> and <B>) of an elastic
material containing a random distribution of stress free bubbles or

cavities

du-3c E, (9r+14y)

o T Iuvee E, (3A+8) 130)
e s .
B T G2 (193¢ B (>

where EO and E2 are defined in Eq. (29).
To study the response at resonant and higher frequencies, we nmust

consider higher powers of kta, and this implies that a larger number of

terms (Xrn) must be kept in the expansion of the average field. This is

best done numerically. For a given value of ka, the T-matrix for the

scatterer is computed. Next, the coefficient matrix M corresponding

to X\n (Eq. (25) is tormed. The complex determinant of the

coerficient mutrix is computed using standard Gauss elimination technigues.

For a given kta, the root of the equation det M = 0 is searched in the

complex K plane (Kl + 1K,) using Muller's method. Good initial guesses

were provided by the Rayleigh limit solutions at low values of kra and




these could be used systematically to obtain convergence of roots at

increasingly higher values of kra. The real part K1 determines the phase
velocity, while the imaginary part K, determines the coherent wave
attenuation.

Here, we present some sample numerical calculation of spherical
glass inclusion in epoxy matrix. The longitudinal and shear wave
velocities of the glass and epoxy matrix are taken as (cp\l = 5,28 mm/usec,
¢ = 2.54 mm/usec, (cS)1 = 3.24 mm/psec and ¢, = 1.16 mm/usec, respectively,
We consider a concentration of 44.1% to reflect a high concentration. The
coherent wave attenuation vs. frequency (longitudinal wave number) for
this configuration is shown in Fig. 3. The general tendency of attenuation
is to increase at lower frequencies and shows some oscillation as shown.
These results are compared with some experimental observations for the
same composite obtained by Kinra (private communication). The theoretical
results obtained in this paper compare with Kinra's experimental results
qualitatively not quantitatively. The reason for this factor difference
must be explored in the future. The oscillation at higher frequencies,
however, indicate that the scattering is mostly in the forward direction.
Thus, in this case repeated scattering should not be important, since
the backscattered wave is significantly smaller than the forward scattered
wave. The same observation may be noticed even for electromagnetic waves
[28] vihere the theoretical results obtained by our theory are compared
with experimental data. (The paper [28] is enclosed for the benefit of
the reader.

Since the phase velocity does vary very slightly as a function ot

frequency, the bulk properties depend totally on coherent wave attenuat:on




only. Thus, one can compute the bulk properties which can be plotted I

in the complex plane (Cole-Cole plot; as shown in our paper [530] which

is also enclosed. |

Recommendations for Future work

It is obvious from the preceding discussions on the QCA as well as
the numerical results that the two major improvements required are for
the QCA as well as the pair correlation function, so that good results
can be obtained for all concentrations even at long and intermediate
values of the wavelength. In a review article, Lax [40] has suggested
that in the quantum mechanical context, the QCA could be improved by
using modified propagators for the fields. In the classical context,
this implies that on the average, single particle scattering takes place
in a macroscopically homogeneous medium, and, in this respect, this idea
is the same as the coherent potential approximation (CPA) of Solid State
Physics. The repeated multiple scattering between pairs or scatterers
or cluster effects can be improved by making the seltf consistent
approximation (SCA) in addition to the CPA.

For the purpose of discussion of these ideas within the T-matrix

- . . . -3 G -
formalism given earlier, we denote by u; and u; the fields scattered by
and exciting the j-th scatterer, respectively. The expansion coetficients

of these fields are denoted bv B/ and bJ, respectively, omitting all

subscripts.

The CPA can be expresscd succinctly as

B = TR b (32 *
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where the T-matrix relatinyg the exciting and scattered tield coefficients
is evaluated using the bulk propagation constant K for the embedding
medium. Thus the UPA implies that the field scattered by a single
obstacle in the presence of several others when udveraged over the posit:ion
of all scatterers is the same as the field that would be produced by a
single particle embedded in a macroscopically homogeneous medium described
by the propagation constant K. The incorporation of the CPA into the
previous formalism involves changes only in the computations and a
redefinition of the T-matrix in Eq. (10). It would be interesting to see
the change, if any, in the numerical computations as a result of invoking
the CPA.

The idea behind the 'selr consistent approximation' (SCA} is somewhat
more suble. From the discussion in the section on the QCA, it is now clear
that QCA-CPA neglects multiple scattering between two rfixed scatterers.
The SCA as defined by Schwart:z and Ehrenreich {41] restores this by

stating that

[#2]
)

) v )
<B’>. . = T(K) <b’>,
ij (K) j L

where T(K) is the T-matrix of scatterer 'j' in the presence of scatterer
“i* in the effective medium with propagation constant K. Expressions for

T(K) as given by Varadan and Varadan [42] may be written as

. -, U -1
N o= 2 -s{-r. OT. ..
TN R(rij/ Y T{l-3(¢ rlJ)TJ(rlJ)T]

1.~ _‘. 3 = _A ‘o
SRS xij)TR(rij)] R( rij,~)

<%
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where ¢ 1s a compact notation for the translation matrices B and C

intreduced in Eq. (12). The R matrix is simplyv the part of 7 that is
. . . - > . = -

regular at the origin, i.e., for }riji = 0. All matrices in Eq. (34

are obtained using the bulk Propzgation Constant for the host mediunm.

We observe that T(X) explicitly depends on rij the distance between
1" and 'j'. The integration procedure will no longer be simple as
before and the SCA may be rather dirficult to enforce in computations,
especially if more realistic models are chosen for the pair correlation
function.

Incc-poration of the CPA as well as improved models of the pair
correlation function into our computations are in progress. We hope that
they will shed some light on the semsitivity of multiple scattering
theories to approximations like QCA and SCA as a function of frequency
and scatterer concentration. Needless to say additional experimental

results are reguired for comparison with these computatiocns.

)
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FREQUENCY DEPENDENT DIELECTRIC CONSTANTS

OF DISCRETE RANDOM MEDIA

V.V, varadan , V.N. Br1ngi' and V.K. Varadan~
Wave Propagation Group
Jovd Laboratory
The Ohio Sctate Jniversity, Columbus, Ohio 43210

Abstracet

Numerical computations of the affect:ive dielectric :onstant of discrete randon media
are presented as a function of frequency. Such media have a complex dielectric
constant giving rise to absorption of a propagating wave both due to geometric
dispersion or muitiple scattering as well as absorption, if any, due to the
viscosity of the particles and the matrix medium. We are concerned with the
absorption due to multiple scattering. The scattering characteristics of the
individual particles are described by a transition or T-matrix. The effects 2f two
models of the pair correlation function which arises in the multiple scattering
analysis areconsidered. We conciude that the well stirred approximation ;WSA} :s
good for sparse concentrations and/or high frequencies whereas the Percus-Yevick
approximation (P-YA) is preferred for higher concentrations.

introduction

The study of the frequency dependence of the effective dielectric constant of
statistically inhomogeneous media is important for practical appiications such as
geoonysical exploration, artificial dielectrics etc. In such dielectrics a
propagating electromagnetic wave undergoes dispersion and absorption. Some
materials are naturally absorptive due 0 viscosity whereas inhomogeneous =zed:ia

exhibit absorption due to geometric dispersion or multiple scatter:ing.

In this paper the effective, complex frequency dependent dielectric :onstant of a
discrete random medium containing a distribution of aiigned spheroidal dielectr:ic
scatterers in free space is calculated for different concentrations of the scatterers
as «ell as for different nmaterial properties of the scatterers. We use 1 mul:iiple
scattering formalism analogous to that used by Twerskyl but use =he :oncept of 4
*ransition matrix or T-matTix to characterize the scattering from a single obstacle.
All details of the geometry ana material properties of the scatterer are contained

in the T-matrix leaving the zeaneral formalism independen: of the type of scatterer,
Spherical statistics are used even though the scatterers aay >e non-spnerical. Llax‘'s”
quasi-crystalline approximation (QCA) is used to tTruncate the heirarchv of - |uations

that result when an ensemple average is performed on the multiply scattered field.




The resulting equations for the average field require i xknowiedge of zhe pair
3,4,5

correiation funcrion of the dielectric scattersrs. In Jrevious 4ork°'4' <& assumed
that the particles did not penetrate 2ach Jther but were otherwise incorTreslated.
#illis” has zalied this the well stirred approximation WSA). However, the ASA lead
to unpnysical results for the absorption ccefficient of the average aedium Zar
sjcatterer concentrations < > 0.1:5. In many artificial dielectrics, the scatterer
concentration 1s often greater than J.1l5. In this paper, ~e have 1lso considered
the Percus-YeVLck. approximation ;P-YA) to the pair correjat:ion funct:ion. He:thezm3
has provided a semi-analytical solution of the resultipng integral equation for a
system of hard spheres. Throop and Bearmang have provided tabulated values of the
pair correlation function for different values of the concentration is a function of
the inter particle distance. We have used these tapulated values i1n the numericzi

computations.

Calculations are presented for a system of polvethylene spheres and spheroids is «ell
as ice particles for 0 < ¢ < 0.16 for several values of the non-dimensional
w“avenumber ka = 3% ranging from 0 to 5.0. ('a’' is a characteristic dimension of the
scatterer). Two types of results are presented. in the first instance the validity
of the WSA and P-YA and their effect on the absorption coefficient is studied as a
function of concentration and frequency. Secondly, the complex plane locus of the
effective dielectric constant is piotted for the systems considered. For artific:ai
dielectrics the locus deviates dramatically from the circular arc locus commonly

aoticed for ordinary solids and liquids that exhibit absorption due to viscosity.

WNave propagation in 3 discrete random zedium

Consider N identical rotationally symmetric dielectric scatlerers chat are alignea
but distributed randomly in free space (see Fig. ;. Let J be the origin of 3
coordinate system located outside the scatterers whose centers ire denoted -v

0,, 0. ... .
01, 2073 0‘(
along the symmetry axis of the scatterers which is taken to be the :-axis. Since

Monochromatic plane electromagnetic waves of frequency . propagate

the medium is isotropic about the :-ax1s there are no depoiari:zation effects. The
time dependence of the incident and hence the fields scatzered bv zne ingividua.
scatterers is all of the form exp(-iwt) and this is suppressed in the eguat.ons :nat
follow.

Let EO[?) be the electric field arising from the incident picne wave and 3T ine

field scattered by the i-th scatterer. The total field at a point T sutside .. the
N scatterers, denoted by E(T) is jiven by

- -
HGI gl .

Lo

N
°
in

The field incident on or exciting the i-th scazterer is 3iven ov
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w«here 'a' is a typical dimension of the scatterer. From Eqs. (1] and (I} we note

that

D =B - ED i3

. P . 5 . :
We need an additional equation relating E; and Ei in order %o make the fields
aicroscopically self.consistent.

Vector spherical functions are used to expand the exciting and scattered fields
associated with 2ach scatterer with respect to an Origin at the center of tnat

scatzerer. Thus
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and the vector spnerical functions are defined as

bou - G bengien by -
| Re 1imo| ) 14 (kT) ’ we*
jou < ;?;' e Loy ’ oy - (?)' 3
tRe limo K lRe Lme
In Eqs. (7) and (3) 1y and hl are the spherical 8essel and Hanxel functions ana <he
Ylmczi,a\ are the normalized spherical harmonics defined with reai angular funct:ions.

To make the motation more compact we introduce a super iadex 'n' to represent

{timo}; as follows

Ou = u -
y x

v
Re “-imo Re “a

We observe that the coefficients of expansion A; and F; associated with the
exciting and scatteved fields depend on the position of all N scatterers. Furcher,

since Eq. {3} 1is satisfied, we can relate the two sets of zoefficients by means of

the T-matrix as defined by Watermanlo. Ne have
Sl R el XL
A - am n :

The T-matrix depends on the frequency of the wave exciting the scatterer 3s aei. as

a

its geometry and material properties.
\

i If Eqs. (4), (3) and (9) are substituted in Eg. (2), we would need the =ranslation
addit:ion theorems for the vector spherical funciions in order that we nay refer al.

it

expansions :n Eq. (J) to a common orig:n. In compact form

1 - - - - - -
-1 (=, Re v_,(». ) ; .7 > 2
A nn' ¢ 1)) Aty b9 1 ]
oul (3 = ROR
¥y ()

: IR, (F) s (5), 35 > 7.

ri"rm' ij PR S Ty
- - -~ . ) ) i
where Tt T,-T, is the vector connecting 0, to 0 and: , is the translat:ion FatTix |

) ) -

for the vector functions and Rnn' is the same as Son’ with the spher:cal Hankel
‘ funczions in Ion repiaced by spherical Bessel functions. Qetai.ed sxpress:ons for

the matrices are given by Bosttémll.

The incident eiectric field &° can be expanded with respect to an origin at ) as

Eo(?) s e = e




anere zhe coerfizients 31 are inown . see for sxample Morse ina Fesnpach“~'. hne
Oooserve that for a plane wave propagating Ll tne :-Cirection :ne dnlv non-:ero vajues
ar a_=a and a tefl,»], all other coefficients »eing :z2rc.

Cya IPERE
1ill 2l

Jsing Egs. £4),:5),.9)-(11) 1n Zq. "I), using the 3rthogonaji.ltv 3f ine veciar

spherical functions we Jbtain

N N

R L TR ) 5
n A i, 5 R Ata i’ A -

Squat:ion (127 15 1 set of coupled algeoraic equat:ions Sor the exciting field
coefficients associrated w1%h each scatterer. [f the numper 7 scatter

finize and tne positien of all the scatterers is known, then Za. I, :zan e soivec

in principle. But we wish to Consider the case New, V== sucn that N/V = R, isa

finite numoer density. Since N 15 large, we are oniy interested :n the Ionfigurational

average of Eq. ‘12) over the positions of Ll particles

The :pherent field

The average of E£3. (117 over the position 2f ali scatzerers -the average 2xciting
field) 1s the same as the snsemble average, where the ensemple is composed of
Jifferent possible configurations of the scatterers. Eguat:on .12} 1s averaged sver
the position of all particles 2xcept the i-th. B8ut the right hand side 3¢ g£5. “12
expiicitly depends on the posizion of the j-th particle. Hence we must specify

the two particle joint probability density ?C;. ?1} Further, we assume cthat al.

scatterers are identical, so that

{ LKzeT: - - . - -
/(; = e ta_ « (N-1; T Pr. r.> - T
<3 ) DIt RE T

i

n'oar v J B B

We note that the average exciting field with cne scatrterer Reld fixed is given :n serms
2f the average with two scatterers aeld fixed, leading to a aeirarcny that ceaguires
knowledge of higher order probability densities. [t has bsen customary to sIuncate

the heirarchy by invohing the 'quasi <rvstaliine approximat:ion' (QCA: first

]
introcuced by Lax™., According t9 this approximat:ion

/9N o /i
\\ gﬂ/ ;;’- <:;n“ N

Specifically the QCA neglects aultiple scattering berween pairs of scatterers.

-

w

Improvements to the QCA have been suggested by Twersiky  and in pTevicus ~0TK ov us

The joint probability density is defined as

‘ = g(,?]-? y i iT,eT,
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Zguation 151 implles that the marticles ire¢ nard no-i1ntervenetration) ind tne
2xcluded voiume :s5 a spnere Of radius '3’ 3.though the particles themselves nav e
non-spherical. The function 3¢ T,-r s calleq tne 2a1r correlat:on function ind

depends onlv on T -r  due %O translational invariance 3f the system .inaer
N
Ionsideration,
#e 3ssume chat the conerent Tield propagates in the same dirsction is the .niiaent

effective ~avenumper K that .s complex 3na Ifrequency iependent.

field «ith 2 new,

Hence

e - iKzt -3
<<E;Lrj> s \ e .
VA
where A 1s the arplitude of the conerent wdve. Thus the average 2xciiing freld
coefficient
iKzery ;
v T tcime Cmi tToitil . LT
1
The Kronecker deitas :in Eg. 17 indicate that only tae azimuthal index asl
contributes, since the conerent <ave propagates in tne :-direcTtion ana those 11 the

square bSracket indicate that there i1s no decolari:zation.

13%. Since

Equations (141-{17) are substituted in Eg zhe T-matrix of 3 retational

svmmetric scatterer 1s block diagonal in the azimuthal index  see Watarman
the

the coherent field propagates in the :-diresction, the sums 35sSOCiated w=itin

e
Eq.

azimuthal indices of the super indices n' and a” in 13) are removed., Further,

‘ 2 N -
3s shown in previous work bv us”™ as well as Twerskv™, the extinction theor=a can e

used o cance] the incident wave term in Ec. (13) with the contribur.on of the

integral at infinity. Finally Eq. (13) can be written i1a cthe Sorm

s ts s O S -~ .
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In EQ. (19) ¢ = a n°a° is the effective spherical concentration of the particles

379
and :n Eq. (20) [Jl j2 3} is the Wigner 3-i symbol.

b W] is
If che integral in Eq. (19) can be evaluated for suitable models of the pair
correlation function, then £q. (18) is a set of coupled, homogeneous, algebraic
equations for the coherent field expansion coefficients. For a non-trivial solution,
the determinant of the coefficient matrix must vanish. This vields the required
dispersion equation for the effective or average medium. In general the systeam of
equations can be solved only numerically to yield the effective wave number i as a
function of frequency (ksw/c) which is complex (K = KI°iK2)' The real part Kl
yields the phase velocity in the aedium and the imaginary part K, leads to daamping
of a propagating wave due to geometric dispersion as well as reaz losses if any,
associated with the discrete particles. We now proceed to consider the evaluation
of the integral in Eq. (19).

The Percus-Yevick pair correlation function

The psir correlation function for an ensemble of particles depends on the nature and
range of the interparticle forces. The average of several measurements of a
statistical variable that characterizes an ensemble will depend on the pair
correlation function. As we have seen, the coherent or average electric field in an
ensemble of dielectric scatterers depends on the pair correlation function (Eqs. (18)-
(19)). To obtain expressions for the pair correlation function, one needs a
description of the interparticle forces. In our case we assume that the dielectric
scatterers behave like effective hard spheres (where the radius 'a’ is that of the
sphere circumscribing the scattsrer). Percus and Yevick? have obtained an
approximate integral equation for the pair correlation function of a classical fluid
1n equilibrium. wcrthoin’ has obtained a series soiution of the integral equation
for an ensemble of hard spheres. The statistics of the fluid are then same as those
of the ensemble of discrete hard particles that we are considering.

Although integral expressions for the correlation functions also result in a
heizarchy, Percus and Yevick have truncated the heirarchy by making certain

approximations that result in a self-consistent relation between the pair correlation
function g(x) and the direct correlstion function C(x). The direct correlat:ion




function may be interpreted as the correiation function resuiting £Tom an 'external
potential’' that produces a simultaneous density fluctuat:on at a point and the
external potential i1s taken o0 be the potential seen 5y a particle given that there
is a particle fixed at another site. Fishor13 comments that the Percus-Yevick
approximation is a sfrong statement of the extremely short range nature of the
direct correlation function. The integral equat:on has che form
T(x) =1 +n fﬂ Tix')dx’ - ng ! orx")t(x-x'}dx’ 21
xced Xx'<la
{x-x'|>2a

where
t(x) = g{x) ; x> 2a
g(x) s 0 ; x< 2a
t{x) = -C(X) ; x < 2a
C(x}= 0 ; x>2a
werthaias has solved the integral equation by Laplace transformation thac results in
an analytic expression for C(n) in the form

cx) = -(1-m ™ [Ae2m)? - et MPx ¢ a(1e2m)” 2] e s (23)

where 'c’ is ciae effective spherical concentrazion of the particles. The Percus-
Yevick approximation fails as the concentration approaches the close packing factor
for spheres and is expected to be good for ¢ < 0.3 or 0.4,

Equation (23) can be substituted back into Eq. (21) to vield a series solution for
g(x) in the forma

g(x) = I g (2 =2y
n=l

where

8,00 = 7 /¢S5 (Len) | ()" eae (25)
where

s 2,,3 2 2 -

(e) = (1-n°)t” » 6n(1-n)t® « 18n"t-12n(le2n) (36)
and

L(t) = 123 {(len2)t = (le2n)]. am

Throop and lcarnnng have tabulated Z(x) as a function of x for values of n » ¢/8. A
few representative plots of the pair correlation function are shown in Fig. I. These

tapylated values were used in evaluating the integral in Eq. (19).
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. correlation function g(x) concentration for spherical

ice particles

Comparison of WSA and P-YA

The homogeneous system of algebraic equations for the effective exciting field were
solved numerically for two different models of the correlation integral [ appearing

in €q. (18). In eq. (19) if the second term is set equal to zero, we just have a
system of uncorrelated hard particles. This is what we have referred to as the weil
stirred approximation (WSA)6 earlier. Computations were also performed by numericaily
evaluating the integral in eq. (19) by using the tabulated values of the Percus-
Yevick approximation to the pair correlation functions provided by Throop and
Bocrnnng.

In Fig. 3, the specific damping Sd s 40 Kz/KI is plotted as a function of concentration
for a randoa distribution of numerical ice particles (cr = 3.168) in free space at

ka = 0.35. The WSA agrees with the P-YA solution only up to concentrations

C“0.075 and then there is a msrked difference and the WSA faiis completely at

C > 0.125 leading to unphysical resulcs. In Fig. 3, the calculations are repeated
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polyethyliene spheres

for the same system at a higher value of ka = 0,95. Here the WSA agrees with P-YA up
to C = 0.1 and in Fig. § similar calculations were performed for polyethylene spheres
(a:r s 2.26) at ka = 4.62. For this case WSA and P-YA results agree up to C = J.15.

From these results it would appear that although the WSA is very poor at higher

scatterer concentrations, the results ioprove dramatically at higher values of ka,
yielding ressonably good results for higher concentrations. The natural explanation

is chat at higher values of ka, multiple scattering effects between Jairs of particles
become smsller and thus peir correlation effects ars not significant and the QCA also
becomes more exact. But for arbitrary concentration and frequency it is safer to use
the Percus-Yevick approximation.

The effective dielectric conseant

Once the effective complex wavenumber X has been computed by soiving Eq. (18)
numerically, we can proceed further and evaluate the effective dielectric constant of

the medium which is also complex and frequency dependent, I[n the usual way, the
dielectric constant t;(u) of the random medium is defined as

e2(a) k&:» . e W) ¢ iey(e)

where L3t and ¢, are the real ind imsginary perts of the dielectric constant and the
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spheres ice particles

subscript on € denotes ‘relative to the mstrix medium’. The real part g is related
to the refractive index and phase velocity in the artifical medium and the imaginary
part ¢, accounts for the damping in the medium. In real materials, the damping is
intrinsic to the systeam and is due to macroscopic viscosity of the dielectric. For
the artificial or effective medium under consideration, in addition to naturai

losses there is daxping due to geometric dispersion or scattering.

14 have given a convenient representation of the dispersion and

Cole and Cole
absorption in a dielectric by means of an Argand disgram or a plot in the complex
c-plane of €, versus ¢, each point of the plot being characteristic of a particular
frequency. For many types of loss mechanisms, the locus of the points is a seai
circle with its center on the real axis or a circular are. In Ref. 14, the complex
dielectric constant of several liquids and solids is plotted conforming to the

cireular arec.

In the present case the complex dielectric constant ¢(w) corresponding to the
effective wavenumber K of the effective mediun is studied for several values of the
frequency. Overall results show a dramatic deviation from the circular arc locus.
This is to be expected since the sedium is artificial.
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In Fig. 6 the ccaplex plane locus of the relative dielectric constant of a random
distribution of polyethylene spheres in free space is presented atr a concentration of
26%. The calculations were done using the Percus-Yevick approximation (P-YA) for

the pair correlation function from ka = 0.05 to 4.05. As can be seen, the figure
bears no ~esemblance to a circular arc locus. By extrapolating the locus at the low
value of ka, one can find the intercept on the Re ¢} axis which is equal to the static
dielectric constant of the effective medium. Since the dielectric constant of the
spherical particles is assumed to be resl, the effective medium shows no absorption
at low frequencies. The static dielectric constant thus obtained will correspond to
the one that can be obtained from mixture theory. In real media displaying a
circular arc locus the high frequency value of c* also intercepts the real axis and
this yields the optical limit or ¢ for the material. In our case, it is not at all
clear at what value of ka, if ac all, the locus will intercept the real axes.

In Figs. 7,8 and 9 the complex plane locds of the effective dielectric consrant of
spherical and oblate spheroidal ice particles is presented where 'a’' and o' are the
semy major and semi minor axes respectively. They zll show marked deviation from the

circular arc locus and it is unclear what ¢ will be for these effective media.
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At the present time there are no experimental results available to verify these
calculations. The practical applications of these computations iare many. Such
calculations will provide reasonable estimates of the frequency dependence
dielectric constant as a function of particle concentration, size and shape for
inhomogeneous media.
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